PDFTK

May 11, 2018

NAME

pdftk - A handy tool for manipulating PDF

SYNOPSIS

pdftk <input PDF files | - | PROMPT>

[input__pw <input PDF owner passwords | PROMPT> |
[<operation> <operation arguments>]

[output <output filename | - | PROMPT> |

[encrypt__40bit | encrypt__128bit |

[allow <permissions> |

[owner__pw <owner password | PROMPT>]

[user__pw <user password | PROMPT> |

[flatten | [need__appearances |

[compress | uncompress |

[keep_ first__id | keep_ final_id] [drop_ xfa | [drop__xmp]
[verbose | [dont__ask | do__ask]

Where:

<operation> may be empty, or:

[cat | shuffle | burst | rotate |

generate_ fdf | fill_form |

background | multibackground |

stamp | multistamp |

dump_ data | dump__data_ utf8 |

dump_ data_ fields | dump_ data_ fields_ utf8 |
dump__data__annots |

update__info | update__info__ utf8 |
attach__files | unpack__files]

For Complete Help: pdftk --help

DESCRIPTION

If PDF is electronic paper, then pdftk is an electronic staple-remover, hole-
punch, binder, secret-decoder-ring, and X-Ray-glasses. Pdftk is a simple
tool for doing everyday things with PDF documents. Use it to:

* Merge PDF Documents or Collate PDF Page Scans

* Split PDF Pages into a New Document

* Rotate PDF Documents or Pages

* Decrypt Input as Necessary (Password Required)

* Encrypt Output as Desired

* Fill PDF Forms with X/FDF Data and/or Flatten Forms
* Generate FDF Data Stencils from PDF Forms

* Apply a Background Watermark or a Foreground Stamp
* Report PDF Metrics, Bookmarks and Metadata

* Add/Update PDF Bookmarks or Metadata

* Attach Files to PDF Pages or the PDF Document

* Unpack PDF Attachments

* Burst a PDF Document into Single Pages

* Uncompress and Re-Compress Page Streams

* Repair Corrupted PDF (Where Possible)

OPTIONS

A summary of options is included below.
--help, -h Show this summary of options.

<input PDF files | - | PROMPT> A list of the input PDF files. If
you plan to combine these PDFs (without using handles) then list files
in the order you want them combined. Use - to pass a single PDF
into pdftk via stdin. Input files can be associated with handles, where
a handle is one or more upper-case letters:

<input PDF handle>= <input PDF filename>

Handles are often omitted. They are useful when specifying PDF passwords
or page ranges, later.

For example: A=inputl.pdf QT=input2.pdf M=input3.pdf

[input__pw <input PDF owner passwords | PROMPT>| Input
PDF owner passwords, if necessary, are associated with files by using
their handles:

<input PDF handle>=<input PDF file owner password>

If handles are not given, then passwords are associated with input files by
order.

Most pdftk features require that encrypted input PDF are accompanied by
the ~owner~ password. If the input PDF has no owner password, then the
user password must be given, instead. If the input PDF has no passwords,
then no password should be given.

When running in do__ask mode, pdftk will prompt you for a password if
the supplied password is incorrect or none was given.

[<operation> <operation arguments>] Available operations are:
cat, shuffle, burst, rotate, generate_ fdf fill_form, back-
ground, multibackground, stamp, multistamp, dump__data,
dump__data_ utf8, dump_ data_ fields, dump__data_ fields_ utf8,
dump__data__annots, update_ info, update__info_ utf8, at-
tach_ files, unpack_ files. Some operations takes additional
arguments, described below.

If this optional argument is omitted, then pdftk runs in filter’ mode. Filter
mode takes only one PDF input and creates a new PDF after applying all
of the output options, like encryption and compression.

cat [<page ranges>]| Assembles (catenates) pages from input
PDFs to create a new PDF. Use cat to merge PDF pages
or to split PDF pages from documents. You can also use
it to rotate PDF pages. Page order in the new PDF is
specified by the order of the given page ranges. Page ranges
are described like this:

<input PDF handle>[<begin page number>[-<end page num-
ber>[<qualifier>]]][<page rotation>]

Where the handle identifies one of the input PDF files, and the
beginning and ending page numbers are one-based references to
pages in the PDF file. The qualifier can be even or odd, and
the page rotation can be north, south, east, west, left, right,
or down.

If a PDF handle is given but no pages are specified, then the
entire PDF is used. If no pages are specified for any of the input
PDFs, then the input PDFs’ bookmarks are also merged and
included in the output.

If the handle is omitted from the page range, then the pages are
taken from the first input PDF.

The even qualifier causes pdftk to use only the even-numbered
PDF pages, so 1-6even yields pages 2, 4 and 6 in that order.
6-leven yields pages 6, 4 and 2 in that order.

The odd qualifier works similarly to the even.

The page rotation setting can cause pdftk to rotate pages and
documents. Each option sets the page rotation as follows (in
degrees): north: 0, east: 90, south: 180, west: 270, left: -90,
right: 490, down: +180. left, right, and down make relative
adjustments to a page’s rotation.

If no arguments are passed to cat, then pdftk combines all input
PDFs in the order they were given to create the output.

NOTES:

* <end page number> may be less than <begin page number>.
* The keyword end may be used to reference the final page of a
document instead of a page number.

* Reference a single page by omitting the ending page number.
* The handle may be used alone to represent the entire PDF
document, e.g., Bl-end is the same as B.

* You can reference page numbers in reverse order by prefixing
them with the letter r. For example, page rl is the last page of
the document, r2 is the next-to-last page of the document, and
rend is the first page of the document. You can use this prefix in
ranges, too, for example r3-rl is the last three pages of a PDF.

Page Range Examples without Handles:

1-endeast - rotate entire document 90 degrees

5 11 20 - take single pages from input PDF
5-250ddwest - take odd pages in range, rotate 90 degrees
6-1 - reverse pages in range from input PDF

Page Range Examples Using Handles:

Say A=inl.pdf B=in2.pdf, then:

A1-21 - take range from inl.pdf

Bend-1odd - take all odd pages from in2.pdf in reverse order

A72 - take a single page from inl.pdf

A1-21 Beven AT2 - assemble pages from both inl.pdf and
in2.pdf

Awest - rotate entire inl.pdf document 90 degrees

B - use all of in2.pdf

A2-30evenleft - take the even pages from the range, remove
90 degrees from each page’s rotation

A A - catenate inl.pdf with inl.pdf

Aevenwest Aoddeast - apply rotations to even pages, odd
pages from inl.pdf

Awest Bwest Bdown - catenate rotated documents

shuffle [<page ranges>] Collates pages from input PDFs to
create a new PDF. Works like the cat operation except
that it takes one page at a time from each page range to
assemble the output PDF. If one range runs out of pages,
it continues with the remaining ranges. Ranges can use
all of the features described above for cat, like reverse
page ranges, multiple ranges from a single PDF, and page
rotation. This feature was designed to help collate PDF
pages after scanning paper documents.

burst Splits a single input PDF document into individual
pages. Also creates a report named doc__data.txt which
is the same as the output from dump_ data. If the
output section is omitted, then PDF pages are named:
pg_ %04d.pdf, e.g.: pg_0001.pdf, pg_0002.pdf, etc. To
name these pages yourself, supply a printf-styled format
string via the output section. For example, if you want
pages named: page_01.pdf, page_02.pdf, etc., pass out-
put page_ %02d.pdf to pdftk. Encryption can be ap-
plied to the output by appending output options such as
owner__pw, e.g.:

pdftk in.pdf burst owner_ pw foopass

rotate [<page ranges>| Takes a single input PDF and ro-
tates just the specified pages. All other pages remain
unchanged. The page order remains unchaged. Specify the
pages to rotate using the same notation as you would with
cat, except you omit the pages that you aren’t rotating:

[<begin page number>[-<end page number>[<qualifier>]]][<page
rotation>]

The qualifier can be even or odd, and the page rotation can be
north, south, east, west, left, right, or down.

Each option sets the page rotation as follows (in degrees): north:
0, east: 90, south: 180, west: 270, left: -90, right: +90,
down: +180. left, right, and down make relative adjustments
to a page’s rotation.

The given order of the pages doesn’t change the page order in
the output.

generate_ fdf Reads a single input PDF file and generates
an FDF file suitable for fill__form out of it to the given
output filename or (if no output is given) to stdout. Does
not create a new PDF.

fill form <FDF data filename | XFDF data filename | - | PROMP
Fills the single input PDF’s form fields with the data from
an FDF file, XFDF file or stdin. Enter the data filename
after fill__form, or use - to pass the data via stdin, like so:

pdftk form.pdf fill_ form data.fdf output form.filled.pdf

If the input FDF file includes Rich Text formatted data in
addition to plain text, then the Rich Text data is packed into
the form fields as well as the plain text. Pdftk also sets a flag
that cues Reader/Acrobat to generate new field appearances
based on the Rich Text data. So when the user opens the PDF,
the viewer will create the Rich Text appearance on the spot. If
the user’s PDF viewer does not support Rich Text, then the
user will see the plain text data instead. If you flatten this
form before Acrobat has a chance to create (and save) new field
appearances, then the plain text field data is what you’ll see.

Also see the flatten and need__appearances options.

background <background PDF filename | - | PROMPT >
Applies a PDF watermark to the background of a single
input PDF. Pass the background PDF’s filename after
background like so:

pdftk in.pdf background back.pdf output out.pdf

Pdftk uses only the first page from the background PDF and
applies it to every page of the input PDF. This page is scaled
and rotated as needed to fit the input page. You can use - to
pass a background PDF into pdftk via stdin.

If the input PDF does not have a transparent background (such
as a PDF created from page scans) then the resulting background
won’t be visible -- use the stamp operation instead.

multibackground <background PDF filename | - | PROMPT>
Same as the background operation, but applies each page
of the background PDF to the corresponding page of the
input PDF. If the input PDF has more pages than the
stamp PDF, then the final stamp page is repeated across
these remaining pages in the input PDF.

stamp <stamp PDF filename | - | PROMPT> This be-
haves just like the background operation except it overlays
the stamp PDF page on top of the input PDF document’s
pages. This works best if the stamp PDF page has a trans-
parent background.

multistamp <stamp PDF filename | - | PROMPT>
Same as the stamp operation, but applies each page of
the background PDF to the corresponding page of the
input PDF. If the input PDF has more pages than the
stamp PDF, then the final stamp page is repeated across
these remaining pages in the input PDF.

dump_ data Reads a single input PDF file and reports its
metadata, bookmarks (a/k/a outlines), page metrics (me-
dia, rotation and labels), data embedded by STAMPtk (see
STAMPtk’s embed option) and other data to the given
output filename or (if no output is given) to stdout. Non-
ASCII characters are encoded as XML numerical entities.
Does not create a new PDF.

dump_ data_ utf8 Same as dump__data excepct that the
output is encoded as UTF-8.

dump_ data_ fields Reads a single input PDF file and reports
form field statistics to the given output filename or (if
no output is given) to stdout. Non-ASCII characters are
encoded as XML numerical entities. Does not create a new
PDF.

dump_ data_ fields_ utf8 Same as dump__data_ fields ex-
cepct that the output is encoded as UTF-8.

dump__data__annots This operation currently reports
only link annotations. Reads a single input PDF file

and reports annotation information to the given output
filename or (if no output is given) to stdout. Non-ASCII
characters are encoded as XML numerical entities. Does
not create a new PDF.

update__info <info data filename | - | PROMPT>
Changes the bookmarks and metadata in a single PDF’s
Info dictionary to match the input data file. The input
data file uses the same syntax as the output from
dump_ data. Non-ASCII characters should be encoded
as XML numerical entities.

This operation does not change the metadata stored in the
PDF’s XMP stream, if it has one. (For this reason you should
include a ModDate entry in your updated info with a current
date/timestamp, format: D:YYYYMMDDHHmMmmSS, e.g.
D:201307241346 -- omitted data after YYYY revert to default
values.)

For example:
pdftk in.pdf update_info in.info output out.pdf

update__info_ utf8 <info data filename | - | PROMPT >
Same as update__info except that the input is encoded
as UTF-8.

attach__files <attachment filenames | PROMPT> [to_ page <page

Packs arbitrary files into a PDF using PDF’s file at-
tachment features. More than one attachment may be
listed after attach_ files. Attachments are added at the
document level unless the optional to__page option is
given, in which case the files are attached to the given
page number (the first page is 1, the final page is end).
For example:

pdftk in.pdf attach_ files tablel.html table2.html to_page 6
output out.pdf

unpack_ files Copies all of the attachments from the input
PDF into the current folder or to an output directory given
after output. For example:

pdftk report.pdf unpack_ files output ~/atts/

or, interactively:

pdftk report.pdf unpack_ files output PROMPT

[output <output filename | - | PROMPT>] The output PDF file-
name may not be set to the name of an input filename. Use - to
output to stdout. When using the dump__data operation, use
output to set the name of the output data file. When using the
unpack__ files operation, use output to set the name of an output
directory. When using the burst operation, you can use output to
control the resulting PDF page filenames (described above).

[encrypt_ 40bit | encrypt_ 128bit] If an output PDF user or owner
password is given, output PDF encryption strength defaults to 128
bits. This can be overridden by specifying encrypt_ 40bit.

[allow <permissions>] Permissions are applied to the output PDF only
if an encryption strength is specified or an owner or user password is
given. If permissions are not specified, they default to 'none,” which
means all of the following features are disabled.

The permissions section may include one or more of the following features:
Printing Top Quality Printing
DegradedPrinting Lower Quality Printing
ModifyContents Also allows Assembly
Assembly
CopyContents Also allows ScreenReaders
ScreenReaders
Modify Annotations Also allows Fillln
Fillln

AllFeatures Allows the user to perform all of the above, and
top quality printing.
[owner__pw <owner password | PROMPT>]
[user__pw <user password | PROMPT>] If an encryption strength
is given but no passwords are supplied, then the owner and user

passwords remain empty, which means that the resulting PDF may
be opened and its security parameters altered by anybody.

[compress | uncompress] These are only useful when you want to edit
PDF code in a text editor like vim or emacs. Remove PDF page stream

compression by applying the uncompress filter. Use the compress
filter to restore compression.

[flatten] Use this option to merge an input PDF’s interactive form fields
and their data) with the PDF’s pages. Only one input PDF may be
(pag y p y
given. Sometimes used with the fill_form operation.

[need__appearances| Sets a flag that cues Reader/Acrobat to generate
new field appearances based on the form field values. Use this when
filling a form with non-ASCII text to ensure the best presentation in
Adobe Reader or Acrobat. It won’t work when combined with the
flatten option.

[keep__first__id | keep__final__id] When combining pages from multiple
PDFs, use one of these options to copy the document ID from either
the first or final input document into the new output PDF. Otherwise
pdftk creates a new document ID for the output PDF. When no
operation is given, pdftk always uses the ID from the (single) input
PDF.

[drop_ xfa] If your input PDF is a form created using Acrobat 7 or Adobe
Designer, then it probably has XFA data. Filling such a form using
pdftk yields a PDF with data that fails to display in Acrobat 7 (and
67). The workaround solution is to remove the form’s XFA data, either
before you fill the form using pdftk or at the time you fill the form.
Using this option causes pdftk to omit the XFA data from the output
PDF form.

This option is only useful when running pdftk on a single input PDF. When
assembling a PDF from multiple inputs using pdftk, any XFA data in the
input is automatically omitted.

[drop__xmp] Many PDFs store document metadata using both an Info
dictionary (old school) and an XMP stream (new school). Pdftk’s
update__info operation can update the Info dictionary, but not the
XMP stream. The proper remedy for this is to include a Mod-
Date entry in your updated info with a current date/timestamp.
The date/timestamp format is: D:YYYYMMDDHHmMmSS, e.g.
D:201307241346 -- omitted data after YYYY revert to default values.
This newer ModDate should cue PDF viewers that the Info metadata
is more current than the XMP data.

Alternatively, you might prefer to remove the XMP stream from the PDF
altogether -- that’s what this option does. Note that objects inside the
PDF might have their own, separate XMP metadata streams, and that

10

drop__xmp does not remove those. It only removes the PDF’s document-
level XMP stream.

[verbose| By default, pdftk runs quietly. Append verbose to the end and
it will speak up.

[dont__ask | do__ask] Depending on the compile-time settings (see
ASK__ABOUT_WARNINGS), pdftk might prompt you for further
input when it encounters a problem, such as a bad password. Override
this default behavior by adding dont__ask (so pdftk won’t ask you
what to do) or do__ask (so pdftk will ask you what to do).

When running in dont__ask mode, pdftk will over-write files with its output
without notice.

EXAMPLES

Collate scanned pages pdftk A=even.pdf B=odd.pdf shuffle A B output
collated.pdf
or if odd.pdf is in reverse order:
pdftk A=even.pdf B=odd.pdf shuffle A Bend-1 output collated.pdf

Decrypt a PDF pdftk secured.pdf input_pw foopass output unse-
cured.pdf

Encrypt a PDF using 128-bit strength (the default), withhold all permi
pdftk 1.pdf output 1.128.pdf owner_ pw foopass

Same as above, except password ’baz’ must also be used to open output
pdftk 1.pdf output 1.128.pdf owner_pw foo user_pw baz

Same as above, except printing is allowed (once the PDF is open)
pdftk 1.pdf output 1.128.pdf owner_pw foo user_pw baz allow
printing

Join inl.pdf and in2.pdf into a new PDF, outl.pdf pdftk inl.pdf
in2.pdf cat output outl.pdf
or (using handles):
pdftk A=inl.pdf B=in2.pdf cat A B output outl.pdf
or (using wildcards):
pdftk *.pdf cat output combined.pdf

Remove page 13 from inl.pdf to create outl.pdf pdftk in.pdf cat 1-
12 14-end output outl.pdf
or:
pdftk A=inl.pdf cat A1-12 Al4-end output outl.pdf

11

Apply 40-bit encryption to output, revoking all permissions (the defaul
pdftk 1.pdf 2.pdf cat output 3.pdf encrypt_ 40bit owner_pw foopass

Join two files, one of which requires the password ’foopass’ The output
pdftk A=secured.pdf 2.pdf input_ pw A=foopass cat output 3.pdf

Uncompress PDF page streams for editing the PDF in a text editor (e.;
pdftk doc.pdf output doc.unc.pdf uncompress

Repair a PDF’s corrupted XREF table and stream lengths, if possible
pdftk broken.pdf output fixed.pdf

Burst a single PDF document into pages and dump its data to doc__dat
pdftk in.pdf burst

Burst a single PDF document into encrypted pages. Allow low-quality
pdftk in.pdf burst owner_pw foopass allow DegradedPrinting

Write a report on PDF document metadata and bookmarks to report.t:
pdftk in.pdf dump_ data output report.txt

Rotate the first PDF page to 90 degrees clockwise pdftk in.pdf cat
least 2-end output out.pdf

Rotate an entire PDF document to 180 degrees pdftk in.pdf cat 1-
endsouth output out.pdf

NOTES

This is a port of pdftk to java. See
https://gitlab.com/marcvinyals/pdftk
The original program can be found at www.pdftk.com

AUTHOR

Original author of pdftk is Sid Steward (sid.steward at pdflabs dot com).

12

	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	NOTES
	AUTHOR

