PROOF R60_62 ISSUE # (#743)

* proof read till pages 472-477

* proof read pages 478-479

* corrected . and , till page 479

* final proofreading done

* Review changes 472-473

* Review 474-475

* Review 477

* Review 478-480

* Review 481-482

* Review 483-485

Co-authored-by: James Harris <wopian@wopian.me>
This commit is contained in:
Niveditha N 2020-11-11 08:30:57 +05:30 committed by GitHub
parent 717a643fdd
commit 0049073c4e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -45,15 +45,15 @@
# 4. IF PRIORITY DISPLAY FLAG IS SET DO A PHASECHANGE. THEN AWAIT
# ASTRONAUT RESPONSE.
#
# 5. DISPLAY RESPONSE RETURNS.
# 5. DISPLAY RESPONSE RETURNS:
#
# A. ENTER -- RESET 3-AXIS FLAG AND RETURN TO CLIENT.
# A. ENTER - RESET 3-AXIS FLAG AND RETURN TO CLIENT.
#
# B. TERMINATE -- IF IN P00 GO TO STEP 5A. OTHERWISE CHECK IF R61 IS
# B. TERMINATE - IF IN P00 GO TO STEP 5A. OTHERWISE CHECK IF R61 IS
# THE CALLING PROGRAM. IF IN R61 AN EXIT IS MADE TO GOTOV56. IF
# NOT IN R61 AN EXIT IS DONE VIA GOTOPOOH.
#
# C. PROCEED -- CONTINUE WITH PROGRAM AT STEP 6.
# C. PROCEED - CONTINUE WITH PROGRAM AT STEP 6.
#
# 6. IF THE 3-AXISFLAG IS NOT SET, THE FINAL CDU ANGLES ARE CALCULATED
# (VECPOINT).
@ -64,14 +64,14 @@
#
# 9. IF THE AUTO SWITCH IS NOT SET GO BACK TO STEP 3.
#
# 10. NON-FLASHING DISPLAY V06N18 (FDAI ANGLES).
# 10. NONFLASHING DISPLAY V06N18 (FDAI ANGLES).
#
# 11. DO A PHASE-CHANGE.
# 11. DO A PHASECHANGE.
#
# 12. DO A MANEUVER CALCULATION AND ICDU DRIVE ROUTINE TO ACHIEVE FINAL
# GIMBAL ANGLES (GOMANUR).
#
# 13. AT END OF MANEUVER TO TO STEP 3.
# GIMBAL ANGLES (GOMANUR).
# 13. AT END OF MANEUVER GO TO STEP 3.
#
# IF SATISFACTORY MANEUVER STEP 5A EXITS R60.
# FOR FURTHER ADJUSTMENT OF THE VEHICLE ATTITUDE ABOUT THE
@ -82,13 +82,13 @@
# CALLING SEQUENCE: TC BANKCALL
# CADR R60LEM
#
# ERASABLE INITIALIZATION REQUIRED: SCAXIS, POINTVSM (FOR VECPOINT)
# ERASABLE INITIALIZATION REQUIRED : SCAXIS, POINTVSM (FOR VECPOINT)
# 3AXISFLG.
#
# SUBROUTINES CALLED: VECPOINT, BALLANGS, GOPERF24, LINUS, GODSPER,
# SUBROUTINES CALLED: VECPOINT, BALLANGS, GOPERF2R, LINUS, GODSPER,
# GOMANUR, DOWNFLAG, PHASCHNG, UPFLAG
#
# NORMAL EXIT MODES: CAE TEMPR60 (CALLER'S RETURN ADDRESS)
# NORMAL EXIT MODES: CAE TEMPR60 (CALLERS RETURN ADDRESS)
# TC BANKJUMP
#
# ALARMS: NONE
@ -114,7 +114,7 @@ REDOMANN CAF 3AXISBIT
TC INTPRET
CALL
VECPOINT # TO COMPUTE FINAL ANGLES
STORE CPHI # STORE FINAL ANGLES -- CPHI, CTHETA, CPSI
STORE CPHI # STORE FINAL ANGLES - CPHI,CTHETA,CPSI
EXIT
TOBALL TC BANKCALL
@ -124,7 +124,7 @@ TOBALLA CAF V06N18
CADR GOPERF2R # DISPLAY PLEASE PERFORM AUTO MANEUVER
TC R61TEST
TC REDOMANC # PROCEED
TC ENDMANU1 # ENTER I.E., FINISHED WITH R60
TC ENDMANU1 # ENTER I.E. FINISHED WITH R60
# Page 474
TC CHKLINUS # TO CHECK FOR PRIORITY DISPLAYS
TC ENDOFJOB
@ -162,11 +162,11 @@ ENDMANU1 TC DOWNFLAG # RESET 3-AXIS FLAG
CHKLINUS CS FLAGWRD4
MASK PDSPFBIT # IS PRIORITY DISPLAY FLAG SET?
CCS A
TC Q # NO -- EXIT
TC Q # NO - EXIT
CA Q
TS MPAC +2 # SAVE RETURN
CS THREE # OBTAIN LOCATION FOR RESTART
AD BUF2 # HOLD Q OF LAST DISPLAY
AD BUF2 # HOLDS Q OF LAST DISPLAY
TS TBASE2
TC PHASCHNG
@ -218,7 +218,7 @@ BIT14+7 OCT 20100
OCT203 OCT 203
V06N18 VN 0618
# SUBROUTINE TO CHECK FOR G+N CONTROL, AUTO STABILIZATION
# SUBROUTINE TO CHECK FOR G+N CONTROL. AUTO STABILIZATION
#
# RETURNS WITH C(A) = + IF NOT SET FOR G+N, AUTO
# RETURNS WITH C(A) = +0 IF SWITCHES ARE SET
@ -238,49 +238,42 @@ ISITAUTO EXTEND # CHECK FOR AUTO MODE
# PROGRAM DESCRIPTION BALLANGS
# MOD NO. LOG SECTION R60,R62
#
# WRITTEN BY RAMA M. AIYAWAR
#
# WRITTEN BY RAMA M.AIYAWAR
# FUNCTIONAL DESCRIPTION
#
# COMPUTES LM FDAI BALL DISPLAY ANGLES
#
# CALLING SEQUENCE
#
# TC BALLANGS
#
# NORMAL EXIT MODE
#
# TC BALLEXIT # (SAVED Q)
#
# ALARM OR EXIT MODE: NIL
#
# ALARM OR EXIT MODE NIL
# SUBROUTINES CALLED
#
# CD*TR*G
# ARCTAN
#
# INPUT
#
# CPHI,CTHETA,CPSI ARE THE ANGLES CORRESPONDING TO AOG, AIG, AMG. THEY ARE
# SP,2'S COMPLEMENT SCALED TO HALF REVOLUTION.
#
# CPHI,CTHETA,CPSI ARE THE ANGLES CORRESPONDING TO AOG,AIG,AMG. THEY ARE
# SP,2S COMPLIMENT SCALED TO HALF REVOLUTION.
# OUTPUT
#
# FDAIX, FDAIY, FDAIZ ARE THE REQUIRED BALL ANGLES SCALED TO HALF REVOLUTION
# SP,2'S COMPEMENT.
#
# THESE ANGLES WILL BE DISPLAYED AS DEGREES AND HUNDREDTHS, IN THE ORDER ROLL, PITCH, YAW, USING NOUNS 18 & 19.
# FDAIX,FDAIY,FDAIZ ARE THE REQUIRED BALL ANGLES SCALED TO HALF REVOLUTION
# SP,2S COMPLIMENT.
# THESE ANGLES WILL BE DISPLAYED AS DEGREES AND HUNDREDTHS. IN THE ORDER ROLL, PITCH, YAW, USING NOUNS 18 & 19.
#
# ERASABLE INITIALIZATION REQUIRED
#
# CPHI, CTHETA, CPSI EACH AN SP REGISTER
#
# CPHI,CTHETA,CPSI EACH A SP REGISTER
# DEBRIS
#
# A,L,Q,MPAC,SINCDU,COSCDU,PUSHLIST,BALLEXIT
# A,L,Q,MPAC,SINCDU,COSCDU,PUSHLIS,BALLEXIT
#
# NOMENCLATURE: CPHI, CTHETA, & CPSI REPRESENT THE OUTER, INNER, AND MIDDLE GIMBAL ANGLES, RESPECTIVELY; OR
# EQUIVALENTLY, CDUX, CDUY, AND CDUZ.
#
# NOMENCLATURE: CPHI, CTHETA, & CPSI REPRESENT THE OUTER, INNER, & MIDDLE GIMBAL ANGLES, RESPECTIVELY; OR
# EQUIVALENTLY, CDUX, CDUY, & CDUZ.
#
# NOTE: ARCTAN CHECKS FOR OVERFLOW AND SHOULD BE ABLE TO HANDLE ANY SINGULARITIES.
@ -314,7 +307,7 @@ BALLANGS TC MAKECADR
COSCDUZ
DMP SL1 # RESCALE
COSCDUX
STCALL COSTH # (COSTH = 16D IN PD)
STCALL COSTH # (COSTH= 16D IN PD)
ARCTAN
PDDL DMP # ROLL = ARCTAN(SZ/CZCX) INTO 2 PD
SINCDUZ
@ -327,15 +320,15 @@ BALLANGS TC MAKECADR
COSCDUX
DMP SL1 # CXCY
COSCDUY
DSU STADR # PULL UP FORM 6 PD
DSU STADR # PULL UP FROM 6 PD
STODL COSTH # COSTH = CXCY - SXSZSY
SINCDUY
DMP SL1
COSCDUX # CXSY
DAD STADR # PULL UP FORM 4 PD
DAD STADR # PULL UP FROM 4 PD
STCALL SINTH # SINTH = CXSY + SXSZCY
ARCTAN # RETURNS WITH D(MPAC) = PITCH
PDDL VDEF # PITCH INTO 2 PD, ROLL INTO MPAC FROM 2 PD
PDDL VDEF # PITCH INTO 2 PD, ROLL INTO MPAC FROM 2PD
RTB # VDEF MAKES V(MPAC) = ROLL, PITCH, YAW
V1STO2S
STORE FDAIX # MODE IS TP
@ -347,32 +340,30 @@ ENDBALL CA BALLEXIT
TC BANKJUMP
# Page 480
# PROGRAM DESCRIPTION -- VECPOINT
# PROGRAM DESCRIPTION - VECPOINT
#
#
# THIS INTERPRETIVE SUBROUTINE MAY BE USED TO POINT A SPACECRAFT AXIS IN A DESIRED DIRECTION. THE AXIS
# TO BE POINTED MUST APPEAR AS A HALF UNIT DOUBLE PRECISION VECTOR IN SUCCESSIVE LOCATIONS OF ERASABLE MEMORY
# BEGINNING WITH THE LOCATION CALLED SCAXIS. THE COMPONENTS OF THIS VECTOR ARE GIVEN IN SPACECRAFT COORDINATES.
# THE DIRECTION IN WHICH THIS AXIS IS TO BE POINTED MUST APPEAR AS A HALF UNIT DOUBLE PRECISION VECTOR IN
# SUCCESSIVE LOCATIONS OF ERASABLE MEMORY BEGINNING WITH THE ADDRESS CALLED POINTVSM. THE COMPONENTS OF THIS
# VECTOR ARE GIVEN IN STABLE MEMBER COORDINATES. WITH THIS INFORMTION VECPOINT COMPUTES A SET OF THREE GIMBAL
# ANGLES (2'S COMPLEMENT) CORRESPONDING TO THE CROSS-PRODUCT ROTATION BETWEEN SCAXIS AND POINTVSM AND STORES THEM
# VECTOR ARE GIVEN IN STABLE MEMBER COORDINATES. WITH THIS INFORMATION VECPOINT COMPUTES A SET OF THREE GIMBAL
# ANGLES (2S COMPLEMENT) CORESPONDING TO THE CROSS-PRODUCT ROTATION BETWE EN SCAXIS AND POINTVSM AND STORES THEM
# IN T(MPAC) BEFORE RETURNING TO THE CALLER.
#
# THIS ROTATION, HOWEVER, MAY BRING THE S/C INTO GIMBAL LOCK. WHEN POINTING A VECTOR IN THE Y-Z PLANE,
# THE TRANSPONDER AXIS, OR THE AOT FOR THE LEM, THE PROGRAM WILL CORRECT THIS PROBLEM BY ROTATING THE CROSS-
# PRODUCT ATTITUDE ABOUT POINTVSM BY A FIXED AMOUNT SUFFICIENT TO ROTATE THE DESIRED S/C ATTITUDE OUT OF GIMBAL
# LOCK. IF THE AXIS TO BE POINTED IS MORE THAN 40.6 DEGREES BUT LESS THAN 60.5 DEG FROM THE +X (OR -X) AXIS,
# THE ADDITIONAL ROTATION TO AVOID GIMBAL LOCK IS 35 DEGREES. IF THE AXIS IS MORE THAN 60.5 DEGREES FROM +X (OR -X)
# LOCK. IF THE AXIS TO BE POINTED IS MORE THAN 40.6 DEGREES BUT LESS THAN 60.5 DEG FROM THE +X (OR-X) AXIS,
# THE ADDITIONAL ROTATION TO AVOID GIMAL LOCK IS 35 DEGREES. IF THE AXIS IS MORE THAN 60.5 DEGEES FROM +X (OR -X)
# THE ADDITIONAL ROTATION IS 35 DEGREES. THE GIMBAL ANGLES CORRESPONDING TO THIS ATTITUDE ARE THEN COMPUTED AND
# STORED AS 2'S COMPLEMENT ANGLES IN T(MPAC) BEFORE RETURNING TO THE CALLER.
#
# STORED AS 2S COMPLIMENT ANGLES IN T(MPAC) BEFORE RETURNING TO THE CALLER.
# WHEN POINTING THE X-AXIS, OR THE THRUST VECTOR, OR ANY VECTOR WITHIN 40.6 DEG OF THE X-AXIS, VECPOINT
# CANNOT CORRECT FOR A CROSS-PRODUCT ROTATION INTO GIMBAL LOCK. IN THIS CASE A PLATFORM REALIGNMENT WOULD BE
# REQUIRED TO POINT THE VECTOR IN THE DESIRED DIRECTION. AT PRESENT NO INDICATION IS GIVEN FOR THIS SITUATION
# EXCEPT THAT THE FINAL MIDDLE GIMBAL ANGLE IN MPAC +2 IS GREATER THAN 59 DEGREES.
#
# CALLING SEQUENCE
#
# CALLING SEQUENCE -
# 1) LOAD SCAXIS, POINTVSM
# 2) CALL
# VECPOINT
@ -383,7 +374,7 @@ ENDBALL CA BALLEXIT
# 2) DESIRED INNER GIMBAL ANGLE IN MPAC +1
# 3) DESIRED MIDDLE GIMBAL ANGLE IN MPAC +2
#
# ERASABLES USED --
# ERASABLES USED -
#
# 1) SCAXIS 6
# 2) POINTVSM 6
@ -403,7 +394,7 @@ ENDBALL CA BALLEXIT
EBANK= BCDU
VECPNT1 STQ BOV # THIS ENTRY USES DESIRED CDUS
VECQTEMP # NOT PRESENT -- ENTER WITH CDUD'S IN MPAC
VECQTEMP # NOT PRESENT-ENTER WITH CDUD'S IN MPAC
VECPNT2
VECPNT2 AXC,2 GOTO
MIS
@ -418,7 +409,7 @@ STORANG STCALL 25D
CDUTODCM # S/C AXES TO STABLE MEMBER AXES (MIS)
VLOAD VXM
POINTVSM # RESOLVE THE POINTING DIRECTION VF INTO
MIS # INITIAL S/C AXES (VF = POINTVSM)
MIS # INITIAL S/C AXES ( VF = POINTVSM)
UNIT
STORE 28D
# PD 28 29 30 31 32 33
@ -447,9 +438,9 @@ COMPMATX CALL # NOW COMPUTE THE TRANSFORMATION FROM
6 # MFS6 = SIN(CPSI) $2
DSU BMN
SINGIMLC # = SIN(59 DEGS) $2
FINDGIMB # /CPSI/ LESS THAN 59 DEGS.
FINDGIMB # /CPSI/ LESS THAN 59 DEGS
# Page 482
# I.E., DESIRED ATTITUDE NOT IN GIMBAL LOCK
# I.E. DESIRED ATTITUDE NOT IN GIMBAL LOCK
DLOAD ABS # CHECK TO SEE IF WE ARE POINTING
SCAXIS # THE THRUST AXIS
@ -469,9 +460,9 @@ COMPMATX CALL # NOW COMPUTE THE TRANSFORMATION FROM
IGSAMEX VXV BMN # FIND THE SHORTEST WAY OF ROTATING THE
SCAXIS # S/C OUT OF GIMBAL LOCK BY A ROTATION
U=SCAXIS # ABOUT +- SCAXIS, I.E., IF (IG (SGN MFS3)
U=SCAXIS # ABOUT +- SCAXIS, I.E. IF (IG (SGN MFS3)
# X SCAXIS . XF) LESS THAN 0, U = SCAXIS
# OTHERWISE U = -SCAXIS.
# OTHERWISE U = -SCAXIS
VLOAD VCOMP
SCAXIS
@ -490,7 +481,7 @@ CHEKAXIS DLOAD ABS
COMPMFSN # IN THIS CASE ROTATE 35 DEGS TO GET OUT
# OF GIMBAL LOCK (VECANG2 $360)
PICKANG1 DLOAD
VECANG1 # = 50 DEGS. $360
VECANG1 # = 50 DEGS $ 360
COMPMFSN CALL
DELCOMP # COMPUTE THE ROTATION ABOUT SCAXIS TO
AXC,1 AXC,2 # BRING MFS OUT OF GIMBAL LOCK
@ -505,12 +496,12 @@ FINDGIMB AXC,1 CALL
0 # EXTRACT THE COMMANDED CDU ANGLES FROM
DCMTOCDU # THIS MATRIX
RTB SETPD
V1STO2S # CONVERT TO 2'S COMPLEMENT
V1STO2S # CONVERT TO 2:S COMPLEMENT
0
GOTO
VECQTEMP # RETURN TO CALLER
PICKAXIS VLOAD DOT # IF VF X VI = 0, FIND VF, VI
PICKAXIS VLOAD DOT # IF VF X VI = 0, FIND VF . VI
28D
SCAXIS
BMN TLOAD
@ -527,7 +518,7 @@ ROT180 VLOAD VXV # IF VF, VI ANTIPARALLEL, 180 DEG ROTATION
HIDPHALF # INITIAL S/C AXES.
UNIT VXV # FIND Y(SM) X X(I)
SCAXIS # FIND UNIT(VI X UNIT(Y(SM) X X(I)))
UNIT BOV # I.E., PICK A VECTOR IN THE PLANE OF X(I),
UNIT BOV # I.E. PICK A VECTOR IN THE PLANE OF X(I),
PICKX # Y(SM) PERPENDICULAR TO VI
STODL COF
36D # CHECK MAGNITUDE
@ -543,17 +534,17 @@ XROT STODL COF
PICKX VLOAD GOTO # PICK THE XAXIS IN THIS CASE
HIDPHALF
XROT
SINGIMLC 2DEC .4285836003 # = SIN(59) $2
SINGIMLC 2DEC .4285836003 # =SIN(59) $2
SINVEC1 2DEC .3796356537 # = SIN(49.4) $2
SINVEC1 2DEC .3796356537 # =SIN(49.4) $2
SINVEC2 2DEC .2462117800 # = SIN(29.5) $2
SINVEC2 2DEC .2462117800 # =SIN(29.5) $2
VECANG1 2DEC .1388888889 # = 50 DEGREES $360
# Page 484
VECANG2 2DEC .09722222222 # = 35 DEGREES $360
1BITDP OCT 0 # KEEP THIS BEFORE DPB(-14) ************
1BITDP OCT 0 # KEEP THIS BEFORE DPB(-14) *********
DPB-14 OCT 00001
OCT 00000
@ -577,11 +568,10 @@ R62FLASH CAF V06N22 # FLASH V06N22 AND
TCF R62FLASH # ENTER
# ASTRONAUT MAY LOAD NEW ICDUS AT THIS
# POINT.
# POINT
GOMOVE TC UPFLAG # SET FOR 3-AXIS MANEUVER
ADRES 3AXISFLG
TC BANKCALL
CADR R60LEM
TCF ENDEXT # END R62