Fixed typos

This commit is contained in:
Andrew Murray 2016-07-08 20:45:31 +10:00 committed by oldmud0
parent f0075c9e0c
commit 6088e4655e
52 changed files with 88 additions and 88 deletions

View File

@ -82,7 +82,7 @@
# IN R2 THE BBCON OF SELF-CHECK, AND IN R3 THE TOTAL NUMBER OF ERRORS DETECTED BY SELF-CHECK SINCE THE LAST MAN # IN R2 THE BBCON OF SELF-CHECK, AND IN R3 THE TOTAL NUMBER OF ERRORS DETECTED BY SELF-CHECK SINCE THE LAST MAN
# INITIATED FRESH START (SLAP1). # INITIATED FRESH START (SLAP1).
# #
# SHOW-BANKSUM STARTING WTIH BANK 0 DISPLAYS IN R1 THE BANK SUM (A +-NUMBER EQUAL TO THE BANK NUMBER), IN R2 # SHOW-BANKSUM STARTING WITH BANK 0 DISPLAYS IN R1 THE BANK SUM (A +-NUMBER EQUAL TO THE BANK NUMBER), IN R2
# THE BANK NUMBER, AND IN R3 THE BUGGER WORD. # THE BANK NUMBER, AND IN R3 THE BUGGER WORD.
# #
# ERASABLE INITIALIZATION REQUIRED # ERASABLE INITIALIZATION REQUIRED

View File

@ -250,7 +250,7 @@
# Page 8 # Page 8
# IN THE FOLLOWING NOUN LIST THE 'NO LOAD' RESTRICTION MEANS THE NOUN # IN THE FOLLOWING NOUN LIST THE 'NO LOAD' RESTRICTION MEANS THE NOUN
# CONTAINS AT LEAST ONE COMONENT WHICH CANNOT BE LOADED, I.E. OF # CONTAINS AT LEAST ONE COMPONENT WHICH CANNOT BE LOADED, I.E. OF
# SCALE TYPE L (MIN/SEC) OR PP (2 INTEGERS). # SCALE TYPE L (MIN/SEC) OR PP (2 INTEGERS).
# IN THIS CASE VERBS 24 AND 25 ARE NOT ALLOWED, BUT VERBS 21, 22, OR 23 # IN THIS CASE VERBS 24 AND 25 ARE NOT ALLOWED, BUT VERBS 21, 22, OR 23
@ -1033,7 +1033,7 @@
# 00005 SPECIFY SOR PHASE 1=FIRST 2=SECOND P38 COLOSSUS + LUMINARY # 00005 SPECIFY SOR PHASE 1=FIRST 2=SECOND P38 COLOSSUS + LUMINARY
# 00006 SPECIFY RR COARSE ALIGN OPTION 1=LOCKON 2=CONTINUOUS DESIG. V41N72 SUNDANCE + LUMINARY # 00006 SPECIFY RR COARSE ALIGN OPTION 1=LOCKON 2=CONTINUOUS DESIG. V41N72 SUNDANCE + LUMINARY
# 00007 SPECIFY PROPULSION SYSTEM 1=SPS 2=RCS P37 COLOSSUS # 00007 SPECIFY PROPULSION SYSTEM 1=SPS 2=RCS P37 COLOSSUS
# 00010 SPECIFY ALIGNEMENT MODE 0=ANY TIME 1=REFSMMAT + G P57 LUMINARY # 00010 SPECIFY ALIGNMENT MODE 0=ANY TIME 1=REFSMMAT + G P57 LUMINARY
# 2=TWO BODIES 3=ONE BODY + G # 2=TWO BODIES 3=ONE BODY + G
# 00011 SPEC. SEPARATION MONITOR PHASE 1=DELTAV 2=STATE VECTOR UPDATE P46 LUMINARY # 00011 SPEC. SEPARATION MONITOR PHASE 1=DELTAV 2=STATE VECTOR UPDATE P46 LUMINARY
# 00012 SPECIFY CSM ORBIT OPTION 1=NO ORBIT CHANGE 2=CHANGE P22 LUMINARY # 00012 SPECIFY CSM ORBIT OPTION 1=NO ORBIT CHANGE 2=CHANGE P22 LUMINARY

View File

@ -490,7 +490,7 @@ ZEROCMDS CAF ZERO
TS TAU1 TS TAU1
TS TAU2 TS TAU2
T6PROG EXTEND # WHEN THE ROTATION COMMANDS (TAUS) T6PROG EXTEND # WHEN THE ROTATION COMMANDS (TAUS)
DCA JETADDR # HAVE BEEN DETERINED DCA JETADDR # HAVE BEEN DETERMINED
DXCH T5LOC # RESET T5LOC FOR PHASE3 DXCH T5LOC # RESET T5LOC FOR PHASE3
TCF RESUME TCF RESUME

View File

@ -32,7 +32,7 @@
# Page 1063 # Page 1063
# SUBROUTINE TO READ GIMBAL ANGLES AND FORM DIFFERENCES. GIMBAL ANGLES ARE SAVED IN 2'S COMPLEMENT, BUT THE # SUBROUTINE TO READ GIMBAL ANGLES AND FORM DIFFERENCES. GIMBAL ANGLES ARE SAVED IN 2'S COMPLEMENT, BUT THE
# DIFFERENECES ARE IN 1'S COMP. ENTER AND READ ANGLES EACH .1 SEC. # DIFFERENCES ARE IN 1'S COMP. ENTER AND READ ANGLES EACH .1 SEC.
# #
# CM/DSTBY = 1 FOR DAP OPERATION # CM/DSTBY = 1 FOR DAP OPERATION
# CM/DSTBY = 0 TO TERMINATE DAP OPERATION # CM/DSTBY = 0 TO TERMINATE DAP OPERATION
@ -289,7 +289,7 @@ T5IDLER1 2CADR T5IDLOC
# Page 1070 # Page 1070
# THIS SECTION CALCULATES THE ANGULAR BODY RATES EACH .1 SEC. THE ANGULAR RATES ARE THOSE ALONG THE BODY AXES # THIS SECTION CALCULATES THE ANGULAR BODY RATES EACH .1 SEC. THE ANGULAR RATES ARE THOSE ALONG THE BODY AXES
# XB, YB, ZB, AND ARE NORMALLY DESIGNATED P, Q, R. REQIREMENT: TEMPORARILY ERASE. JETEM, JETEM +1 # XB, YB, ZB, AND ARE NORMALLY DESIGNATED P, Q, R. REQUIREMENT: TEMPORARILY ERASE. JETEM, JETEM +1
# #
# SINCE RESTARTS ZERO THE JET OUTPUT CHANNELS, NO ATTEMPT IS MADE TO RESTART THE ENTRY DAPS. THAT IS, # SINCE RESTARTS ZERO THE JET OUTPUT CHANNELS, NO ATTEMPT IS MADE TO RESTART THE ENTRY DAPS. THAT IS,
# THE 0.1 SEC DAPS WILL MISS A CYCLE, AND WILL PICK UP AT THE NEXT 0.1 SEC UPDATE. MOST OF THE TIME THE 2 SEC # THE 0.1 SEC DAPS WILL MISS A CYCLE, AND WILL PICK UP AT THE NEXT 0.1 SEC UPDATE. MOST OF THE TIME THE 2 SEC
@ -1079,7 +1079,7 @@ TIMETST5 CS ONE
# SECTION JETCALL EXAMINES CONTENTS OF JET TIMES IN LIST, ESTABLISHES WTLST ENTRIES, AND EXECUTES CORRESPONDING # SECTION JETCALL EXAMINES CONTENTS OF JET TIMES IN LIST, ESTABLISHES WTLST ENTRIES, AND EXECUTES CORRESPONDING
# JET CODES. A POSITIVE NZ NUMBER IN A TIME REGISTER INDICATES THAT A WTLST CALL IS TO BE MADE, AND ITS JET BITS # JET CODES. A POSITIVE NZ NUMBER IN A TIME REGISTER INDICATES THAT A WTLST CALL IS TO BE MADE, AND ITS JET BITS
# EXECUTED. A +0 INDICATES THAT THE TIME INTERVAL DOES NOT APPLY, BUT THE CORRESPOINDING JET BITS ARE TO BE # EXECUTED. A +0 INDICATES THAT THE TIME INTERVAL DOES NOT APPLY, BUT THE CORRESPONDING JET BITS ARE TO BE
# EXECUTED. A NEG NUMBER INDICATES THAT THE TIME INTERVAL HAS BEEN PROCESSED. IN EVENT OF +0 OR -1, THE # EXECUTED. A NEG NUMBER INDICATES THAT THE TIME INTERVAL HAS BEEN PROCESSED. IN EVENT OF +0 OR -1, THE
# SUBSEQUENT TIME REGISTER IS EXAMINED FOR POSSIBLE ACTION. THUS JET BITS TO BE EXECUTED MAY COME FROM MORE # SUBSEQUENT TIME REGISTER IS EXAMINED FOR POSSIBLE ACTION. THUS JET BITS TO BE EXECUTED MAY COME FROM MORE
# THAN ONE REGISTER. # THAN ONE REGISTER.

View File

@ -106,7 +106,7 @@
# RESPECTIVELY, IS THE CENTRAL BODY # RESPECTIVELY, IS THE CENTRAL BODY
# TAU +28 DESIRED TRANSFER TIME IN CENTISECONDS (DP) # TAU +28 DESIRED TRANSFER TIME IN CENTISECONDS (DP)
# MAY BE POS OR NEG AND ABSOLUTE VALUE MAY BE GREATER OR LESS THAN ONE ORBITAL PERIOD. # MAY BE POS OR NEG AND ABSOLUTE VALUE MAY BE GREATER OR LESS THAN ONE ORBITAL PERIOD.
# XKEPNEW +17 FOR EARTH DP GUESS OF ROOT X OF KEPLERS EQN IN SQRT(METERS).SIGN SHOULD AGREE WTIH THAT OF TAU. # XKEPNEW +17 FOR EARTH DP GUESS OF ROOT X OF KEPLERS EQN IN SQRT(METERS).SIGN SHOULD AGREE WITH THAT OF TAU.
# +16 FOR MOON AND ABS VALUE SHOULD BE LESS THAN THAT CORRESPONDING TO A PERIOD, VIZ, 2PI SQRT(SEMI- # +16 FOR MOON AND ABS VALUE SHOULD BE LESS THAN THAT CORRESPONDING TO A PERIOD, VIZ, 2PI SQRT(SEMI-
# MAJOR AXIS), FOR SPEED OF CONVERGENCE, BUT IF EITHER CONDITION FAILS, XKEPNEW IS RESET # MAJOR AXIS), FOR SPEED OF CONVERGENCE, BUT IF EITHER CONDITION FAILS, XKEPNEW IS RESET
# BY KEPLER TO A POOR BUT VALID GUESS. # BY KEPLER TO A POOR BUT VALID GUESS.
@ -286,7 +286,7 @@
# STATE IS TO BE UPDATED ALONG A CONIC TRAJECTORY, CALCULATES THE CORRESPONDING TIME-OF-FLIGHT AND, IN ADDITION, # STATE IS TO BE UPDATED ALONG A CONIC TRAJECTORY, CALCULATES THE CORRESPONDING TIME-OF-FLIGHT AND, IN ADDITION,
# PROVIDES THE OPTION OF COMUTING THE NEW UPDATED STATE VECTOR. THE RESULTING TRAJECTORY MAY BE A SECTION OF A # PROVIDES THE OPTION OF COMUTING THE NEW UPDATED STATE VECTOR. THE RESULTING TRAJECTORY MAY BE A SECTION OF A
# CIRCLE, ELLIPSE, PARABOLA, OR HYPERBOLA WITH RESPECT TO THE EARTH OR THE MOON. THE USE OF THE SUBROUTINE CAN BE # CIRCLE, ELLIPSE, PARABOLA, OR HYPERBOLA WITH RESPECT TO THE EARTH OR THE MOON. THE USE OF THE SUBROUTINE CAN BE
# EXTENDED USING OTHER PRIMARY BODIES BY SIMPLE ADDITIONS TO THE MUTABLE WTIHOUT INTRODUCING ANY CODING CHANGES, # EXTENDED USING OTHER PRIMARY BODIES BY SIMPLE ADDITIONS TO THE MUTABLE WITHOUT INTRODUCING ANY CODING CHANGES,
# ACCEPTING THE INHERENT SCALE FACTOR CHANGES IN POSITION AND VELOCITY. # ACCEPTING THE INHERENT SCALE FACTOR CHANGES IN POSITION AND VELOCITY.
# #
# THE RESTRICTIONS ARE -- # THE RESTRICTIONS ARE --
@ -1776,7 +1776,7 @@ MUTABLE 2DEC* 3.986032 E10 B-36* # MUE
LDPOSMAX EQUALS LODPMAX # DPPOSMAX IN LOW MEMORY. LDPOSMAX EQUALS LODPMAX # DPPOSMAX IN LOW MEMORY.
# ERASABLE ASSIGNEMENTS # ERASABLE ASSIGNMENTS
# KEPLER SUBROUTINE # KEPLER SUBROUTINE

View File

@ -33,7 +33,7 @@
BANK BANK
# THIS ROUTINE TAKES THE SHAFT AND TRUNNION ANGLES AS READ BY THE CM OPTICAL SYSTEM AND CONVERTS THEM INTO A UNIT # THIS ROUTINE TAKES THE SHAFT AND TRUNNION ANGLES AS READ BY THE CM OPTICAL SYSTEM AND CONVERTS THEM INTO A UNIT
# VECTOR REFERENCED TO THE NAVIGATION BASE COORDINATE SYSTEM AND COINCIDENT WTIH THE SEXTANT LINE OF SIGHT. # VECTOR REFERENCED TO THE NAVIGATION BASE COORDINATE SYSTEM AND COINCIDENT WITH THE SEXTANT LINE OF SIGHT.
# #
# THE INPUTS ARE: 1) THE SEXTAND SHAFT AND TRUNNION ANGLES ARE STORED SP IN LOCATIONS 3 AND 5 RESPECTIVELY OF THE # THE INPUTS ARE: 1) THE SEXTAND SHAFT AND TRUNNION ANGLES ARE STORED SP IN LOCATIONS 3 AND 5 RESPECTIVELY OF THE
# MARK VAC AREA. 2) THE COMPLEMENT OF THE BASE ADDRESS OF THE MARK VAC AREA IS STORED SP AT LOCATION X1 OF YOUR # MARK VAC AREA. 2) THE COMPLEMENT OF THE BASE ADDRESS OF THE MARK VAC AREA IS STORED SP AT LOCATION X1 OF YOUR

View File

@ -485,7 +485,7 @@
# 5. IT IS ALWAYS GOOD PRACTICE TO TERMINATE AN EXTENDED VERB BEFORE ASKING FOR ANOTHER ONE OR THE SAME ONE # 5. IT IS ALWAYS GOOD PRACTICE TO TERMINATE AN EXTENDED VERB BEFORE ASKING FOR ANOTHER ONE OR THE SAME ONE
# OVER AGAIN. # OVER AGAIN.
# #
# SPECIAL CONSIDERATONS -- # SPECIAL CONSIDERATIONS --
# Page 1464 # Page 1464
# 1. MPAC +2 SAVED ONLY IN MARK DISPLAYS # 1. MPAC +2 SAVED ONLY IN MARK DISPLAYS
# 2. GODSP(R), REGODSP(R), GOMARK(R) ALWAYS TURN ON THE FLASH IF ENTERED WITH A PASTE VERB REQUEST. # 2. GODSP(R), REGODSP(R), GOMARK(R) ALWAYS TURN ON THE FLASH IF ENTERED WITH A PASTE VERB REQUEST.
@ -638,7 +638,7 @@ COPYPACS INDEX COPINDEX
TC Q TC Q
# PINCHEK CHECKS TO SEE IF THE CURRENT MARK REQUEST IS MADE BY THE ASTRONAUT WHILE INTERUPTING A GOPLAY DISPLAY # PINCHEK CHECKS TO SEE IF THE CURRENT MARK REQUEST IS MADE BY THE ASTRONAUT WHILE INTERRUPTING A GOPLAY DISPLAY
# (A NORMAL OR A PRIO). IF THE ASTRONAUT TRIES TO MARK DURING A PRIO, THE CHECK FAIL LIGHT GOES ON AND THE MARK # (A NORMAL OR A PRIO). IF THE ASTRONAUT TRIES TO MARK DURING A PRIO, THE CHECK FAIL LIGHT GOES ON AND THE MARK
# REQUEST IS ENDED. IF HE TRIES TO MARK DURING A NORM, THE MARK IS ALLOWED. IN THIS CASE THE NORM IS PUT TO SLEEP # REQUEST IS ENDED. IF HE TRIES TO MARK DURING A NORM, THE MARK IS ALLOWED. IN THIS CASE THE NORM IS PUT TO SLEEP
# UNTIL ALL MARKING IS FINISHED. # UNTIL ALL MARKING IS FINISHED.

View File

@ -106,7 +106,7 @@
# 1. DOWNLISTS. DOWNLISTS MUST BE COMPILED IN THE SAME BANK AS THE # 1. DOWNLISTS. DOWNLISTS MUST BE COMPILED IN THE SAME BANK AS THE
# DOWN-TELEMETRY PROGRAM. THIS IS DONE FOR EASE OF CODING, FASTER # DOWN-TELEMETRY PROGRAM. THIS IS DONE FOR EASE OF CODING, FASTER
# EXECUTION. # EXECUTION.
# 2. EACH DOWNLINK LIST CONSISTES OF A CONTROL LIST AND A NUMBER OF # 2. EACH DOWNLINK LIST CONSISTS OF A CONTROL LIST AND A NUMBER OF
# SUBLISTS. # SUBLISTS.
# 3. A SUBLIST REFERS TO A SNAPSHOT OR DATA COMMON TO THE SAME OR OTHER # 3. A SUBLIST REFERS TO A SNAPSHOT OR DATA COMMON TO THE SAME OR OTHER
# DOWNLINK LISTS. ANY SUBLIST CONTAINING COMMON DATA NEEDS TO BE # DOWNLINK LISTS. ANY SUBLIST CONTAINING COMMON DATA NEEDS TO BE
@ -122,7 +122,7 @@
# SAME AS ECADR, BUT USED WHEN THE WORD ADDRESSED IS THE LEFT # SAME AS ECADR, BUT USED WHEN THE WORD ADDRESSED IS THE LEFT
# HALF OF A DOUBLE-PRECISION WORD FOR DOWN TELEMETRY. # HALF OF A DOUBLE-PRECISION WORD FOR DOWN TELEMETRY.
# B. 2DNADR - 6DNADR N-WORD DOWNLIST ADDRESS, N = 2 - 6. # B. 2DNADR - 6DNADR N-WORD DOWNLIST ADDRESS, N = 2 - 6.
# SAME AS 1DNADR, BUT WTIH THE 4 UNUSED BITS OF THE ECADR FORMAT # SAME AS 1DNADR, BUT WITH THE 4 UNUSED BITS OF THE ECADR FORMAT
# FILLED IN WITH 0001-0101. USED TO POINT TO A LIST OF N DOUBLE- # FILLED IN WITH 0001-0101. USED TO POINT TO A LIST OF N DOUBLE-
# PRECISION WORDS, STORED CONSECUTIVELY, FOR DOWN TELEMETRY. # PRECISION WORDS, STORED CONSECUTIVELY, FOR DOWN TELEMETRY.
# C. DNCHAN DOWNLIST CHANNEL ADDRESS. # C. DNCHAN DOWNLIST CHANNEL ADDRESS.
@ -347,7 +347,7 @@ SUBLIST EQUALS DNQ
# AFTER KEYING IN V74E THE CURRENT DOWNLIST WILL BE IMMEDIATELY TERMINATED AND THE DOWNLINK ERASABLE DUMP # AFTER KEYING IN V74E THE CURRENT DOWNLIST WILL BE IMMEDIATELY TERMINATED AND THE DOWNLINK ERASABLE DUMP
# WILL BEGIN. # WILL BEGIN.
# #
# ONCE INITITIATED THE DOWNLINK ERASABLE DUMP CAN BE TERMINATED (AND INTERRUPTED DOWNLIST REINSTATED) ONLY # ONCE INITIATED THE DOWNLINK ERASABLE DUMP CAN BE TERMINATED (AND INTERRUPTED DOWNLIST REINSTATED) ONLY
# BY THE FOLLOWING: # BY THE FOLLOWING:
# #
# 1. A FRESH START # 1. A FRESH START

View File

@ -47,7 +47,7 @@ NOVAC INHINT
TS EXECTEM1 TS EXECTEM1
TCF NOVAC2 # ENTER EXECUTIVE BANK. TCF NOVAC2 # ENTER EXECUTIVE BANK.
# TO ENTER A JOB REQUEST REQUIREING A VAC AREA -- E.G., ALL (PARTIALLY) INTERPRETIVE JOBS. # TO ENTER A JOB REQUEST REQUIRING A VAC AREA -- E.G., ALL (PARTIALLY) INTERPRETIVE JOBS.
FINDVAC INHINT FINDVAC INHINT
TS NEWPRIO TS NEWPRIO
@ -157,7 +157,7 @@ NOVAC2 CAF ZERO # NOVAC ENTERS HERE. FIND A CORE SET.
NOVAC3 TS EXECTEM2 NOVAC3 TS EXECTEM2
INDEX LOCCTR INDEX LOCCTR
CCS PRIORITY # EACH PRIORITY REGISTER CONTAINS -0 IF CCS PRIORITY # EACH PRIORITY REGISTER CONTAINS -0 IF
TCF NEXTCORE # THE CORESPONDING CORE SET IS AVAILABLE. TCF NEXTCORE # THE CORRESPONDING CORE SET IS AVAILABLE.
NO.CORES DEC 6 NO.CORES DEC 6
TCF NEXTCORE # AN ACTIVE JOB HAS A POSITIVE PRIORITY TCF NEXTCORE # AN ACTIVE JOB HAS A POSITIVE PRIORITY
# BUT A DORMANT JOB'S PRIORITY IS NEGATIVE # BUT A DORMANT JOB'S PRIORITY IS NEGATIVE
@ -319,7 +319,7 @@ JOBWAKE3 CAF COREINC
ADS LOCCTR ADS LOCCTR
CCS EXECTEM2 CCS EXECTEM2
TCF JOBWAKE4 TCF JOBWAKE4
CS ONE # EXIT IF SLEEPIG JOB NOT FOUND. CS ONE # EXIT IF SLEEPING JOB NOT FOUND.
TS LOCCTR TS LOCCTR
TCF ENDFIND TCF ENDFIND

View File

@ -99,7 +99,7 @@
# #
# 1. INTIALIZE OUTBIT CHANNELS 11,12,13, AND 14 # 1. INTIALIZE OUTBIT CHANNELS 11,12,13, AND 14
# 2. REPLACE ALL TASKS ON WAITLIST WITH ENDTASK # 2. REPLACE ALL TASKS ON WAITLIST WITH ENDTASK
# 3. MAKE ALL EXECUTEVE REGISTERS AVAILABLE # 3. MAKE ALL EXECUTIVE REGISTERS AVAILABLE
# 4. MAKE ALL VAC AREAS AVAILABLE # 4. MAKE ALL VAC AREAS AVAILABLE
# 5. CLEAR DSKY REGISTERS # 5. CLEAR DSKY REGISTERS
# 6. ZERO NUMEROUS SWITCHES # 6. ZERO NUMEROUS SWITCHES
@ -130,7 +130,7 @@
# B. ALARMS # B. ALARMS
# #
# 1107 PHASE TABLE ERROR # 1107 PHASE TABLE ERROR
# 1110 RESTART WTIH NO ACTIVE GROUPS # 1110 RESTART WITH NO ACTIVE GROUPS
# Page 183 # Page 183
BANK 10 BANK 10

View File

@ -2626,7 +2626,7 @@ NORMTEST CCS CYL # SEE IF ARGUMENT NOW NORMALIZED AT
# Page 1187 # Page 1187
# TRIGONOMETRIC FUNCTION PACKAGE. # TRIGONOMETRIC FUNCTION PACKAGE.
# THE FOLLOWING TRIGONOMETRIC FUNCTIONS ARE AVAIALABLE AS INTERPRETIVE OPERATIONS: # THE FOLLOWING TRIGONOMETRIC FUNCTIONS ARE AVAILABLE AS INTERPRETIVE OPERATIONS:
# 1. SIN COMPUTES (1/2)SINE(2 PI MPAC). # 1. SIN COMPUTES (1/2)SINE(2 PI MPAC).
# 2. COS COMPUTES (1/2)COSINE(2 PI MPAC). # 2. COS COMPUTES (1/2)COSINE(2 PI MPAC).
# 3. ASIN COMPUTES (1/2PI)ARCSINE(2 MPAC). # 3. ASIN COMPUTES (1/2PI)ARCSINE(2 MPAC).

View File

@ -365,7 +365,7 @@ NOACY CA RWORD1 # Y-TRANSLATION NOT ACCEPTED
# FAILURES. IF THERE ARE BD FAILURES, Z-TRANSLATION COMMANDS WILL BE IGNORED, IN WHICH CASE THE ASTRONAUT SHOULD # FAILURES. IF THERE ARE BD FAILURES, Z-TRANSLATION COMMANDS WILL BE IGNORED, IN WHICH CASE THE ASTRONAUT SHOULD
# SWITCH TO AC ROLL. # SWITCH TO AC ROLL.
# #
# NOTE THAT IF ONE QUAD FAILS (E.G. B FAILED), Z-TRANSLATION IS STILL POSSIBLE AND THAT THE UNDESIREABLE ROLL # NOTE THAT IF ONE QUAD FAILS (E.G. B FAILED), Z-TRANSLATION IS STILL POSSIBLE AND THAT THE UNDESIRABLE ROLL
# INTRODUCED BY THIS TRANSLATION WILL BE COMPENSATED BY THE TWO AC ROLL JETS ACTUATED BY THE AUTOPILOT LOGIC. # INTRODUCED BY THIS TRANSLATION WILL BE COMPENSATED BY THE TWO AC ROLL JETS ACTUATED BY THE AUTOPILOT LOGIC.
# #
# WORD MAKE UP....RTABLE # WORD MAKE UP....RTABLE
@ -386,7 +386,7 @@ NOACY CA RWORD1 # Y-TRANSLATION NOT ACCEPTED
# THIS WORD MAY THEN BE ADDED TO THE WORD SELECTED FROM THE YZ-TRANSLATION TABLE, WHICH HAS THE SAME TYPE OF # THIS WORD MAY THEN BE ADDED TO THE WORD SELECTED FROM THE YZ-TRANSLATION TABLE, WHICH HAS THE SAME TYPE OF
# CODING AS ABOVE, AND THE NET ROLL DETERMINED BY SHIFTING THE RESULTANT WORD RIGHT 8 PLACES AND SUBTRACTING FOUR. # CODING AS ABOVE, AND THE NET ROLL DETERMINED BY SHIFTING THE RESULTANT WORD RIGHT 8 PLACES AND SUBTRACTING FOUR.
# #
# THE WORD CORRESPONDING TO THE BD ROLL HAS A SIMILAR INTEPRETATION, EXCEPT THAT BITS 12, 13, 14 ARE CODED # THE WORD CORRESPONDING TO THE BD ROLL HAS A SIMILAR INTERPRETATION, EXCEPT THAT BITS 12, 13, 14 ARE CODED
# (AS ABOVE) TO GIVE THE NET ROLL TORQUE. # (AS ABOVE) TO GIVE THE NET ROLL TORQUE.
# ROLL TRANS QUADFAIL BIAS # ROLL TRANS QUADFAIL BIAS

View File

@ -89,7 +89,7 @@ INCRDCDU TS KSPNDX
TCF INCRDCDU # LOOP FOR THREE AXES TCF INCRDCDU # LOOP FOR THREE AXES
RELINT RELINT
# COMPARE PRESENT TIME WTIH TIME TO TERMINATE MANEUVER # COMPARE PRESENT TIME WITH TIME TO TERMINATE MANEUVER
TMANUCHK TC TIMECHK TMANUCHK TC TIMECHK
TC POSTJUMP TC POSTJUMP

View File

@ -127,7 +127,7 @@ ELRCODE OCT 22
# THE RECEPTION OF A BAD CODE (I.E., CCC FAILURE) LOCKS OUT FURTHER UPLINK ACTIVITY BY SETTING BIT4 OF FLAGWRD7 = 1. # THE RECEPTION OF A BAD CODE (I.E., CCC FAILURE) LOCKS OUT FURTHER UPLINK ACTIVITY BY SETTING BIT4 OF FLAGWRD7 = 1.
# THIS INDICATION WILL BE TRANSFERRED TO THE GROUND BY THE DOWNLINK WHICH DOWNLINKS ALL FLAGWORDS. # THIS INDICATION WILL BE TRANSFERRED TO THE GROUND BY THE DOWNLINK WHICH DOWNLINKS ALL FLAGWORDS.
# WHEN UPLINK ACTIVITY IS LOCKED OUT, IT CAN BE ALLOWED WHEN THE GROUND UPLINKS AND `ERROR RESET' CODE. # WHEN UPLINK ACTIVITY IS LOCKED OUT, IT CAN BE ALLOWED WHEN THE GROUND UPLINKS AND `ERROR RESET' CODE.
# (IT IS RECOMMENDED THAT THE `ERROR LIGHT RESET' CODE IS PRECEEDED BY 16 BITS THE FIRST OF WHICH IS 1 FOLLOWED # (IT IS RECOMMENDED THAT THE `ERROR LIGHT RESET' CODE IS PRECEDED BY 16 BITS THE FIRST OF WHICH IS 1 FOLLOWED
# BY 15 ZEROS. THIS WILL ELIMINATE EXTRANEOUS BITS FROM INLINK WHICH MAY HAVE BEEN LEFT OVER FROM THE ORIGINAL # BY 15 ZEROS. THIS WILL ELIMINATE EXTRANEOUS BITS FROM INLINK WHICH MAY HAVE BEEN LEFT OVER FROM THE ORIGINAL
# FAILURE). # FAILURE).
# #

View File

@ -420,7 +420,7 @@ DE-GR-50 TC 2PHSCHNG
# #
# ABORT MODES: P23 ABORT IF MARKING SYSTEM OR EXTENDED VERB ACTIVE # ABORT MODES: P23 ABORT IF MARKING SYSTEM OR EXTENDED VERB ACTIVE
# #
# INPUT: NONE REQURIES, NORMALLY CALLED BY P23 # INPUT: NONE REQUIRES, NORMALLY CALLED BY P23
# #
# OUTPUT: TRUNNION BIAS ANGLE: ANGLE DETERMINED WHEN SHAFT LINE OF SIGHT # OUTPUT: TRUNNION BIAS ANGLE: ANGLE DETERMINED WHEN SHAFT LINE OF SIGHT
# (SLOS) AND LANDMARK LINE OF SIGHT (LLOS) ARE SUPERIMPOSED. THIS ANGLE # (SLOS) AND LANDMARK LINE OF SIGHT (LLOS) ARE SUPERIMPOSED. THIS ANGLE
@ -1407,7 +1407,7 @@ INITB STORE W +90D,1 # CLEAR 54 - 89
# #
# OMETATHSM = (REFSMMAT)(OMEGATH). # OMETATHSM = (REFSMMAT)(OMEGATH).
# #
# (10) OBTAIN GIMBAL ANGLE INCREMETNS FOR 0.1 SECOND. # (10) OBTAIN GIMBAL ANGLE INCREMENTS FOR 0.1 SECOND.
# #
# DTHETASM = (0.1)(OMEGATHSM) # DTHETASM = (0.1)(OMEGATHSM)
# #
@ -1776,7 +1776,7 @@ FURST3 EQUALS 13,14,15 # CONSTANT FOR AUTOCK (OCT 70000).
# ..... S22.1 ORBITAL NAVIGATION ROUTINE # ..... S22.1 ORBITAL NAVIGATION ROUTINE
# MOD 1 # MOD 1
# #
# FUNCTONAL DESCRIPTION # FUNCTIONAL DESCRIPTION
# 1. UPDATE CSM STATE VECTOR # 1. UPDATE CSM STATE VECTOR
# 2. UPDATE LANDMARK POSITION # 2. UPDATE LANDMARK POSITION
# 3. CONVERT W MATRIX FROM 9 TO 6 DIMENSIONS # 3. CONVERT W MATRIX FROM 9 TO 6 DIMENSIONS

View File

@ -42,7 +42,7 @@
# MOD BY WHITE, P. DATE 1 JUNE 67 # MOD BY WHITE, P. DATE 1 JUNE 67
# #
# PURPOSE # PURPOSE
# (1) TO CALCULATE PARAMETERS ASSOCIATED WTIH THE FOLLOWING # (1) TO CALCULATE PARAMETERS ASSOCIATED WITH THE FOLLOWING
# CONCENTRIC FLIGHT PLAN MANEUVERS -- THE CO-ELLIPTIC SEQUENCE # CONCENTRIC FLIGHT PLAN MANEUVERS -- THE CO-ELLIPTIC SEQUENCE
# INITIATION (CSI) MANEUVER AND THE CONSTANT DELTA ALTITUDE # INITIATION (CSI) MANEUVER AND THE CONSTANT DELTA ALTITUDE
# (CDH) MANEUVER. # (CDH) MANEUVER.

View File

@ -31,7 +31,7 @@
# Page 460 # Page 460
# TRANSFER PHASE INITITIATION (TPI) PROGRAMS (P34 AND P74) # TRANSFER PHASE INITIATION (TPI) PROGRAMS (P34 AND P74)
# MOD NO -1 LOG SECTION -- P32-P35, P72-P75 # MOD NO -1 LOG SECTION -- P32-P35, P72-P75
# MOD BY WHITE, P. DATE: 1 JUNE 67 # MOD BY WHITE, P. DATE: 1 JUNE 67
# #

View File

@ -44,7 +44,7 @@
# DESCRIPTION # DESCRIPTION
# A RETURN TO EARTH TRAJECTORY IS COMPUTED PROVIDED THE CSM IS OUTSIDE THE LUNAR SPHERE OF INFLUENCE AT THE # A RETURN TO EARTH TRAJECTORY IS COMPUTED PROVIDED THE CSM IS OUTSIDE THE LUNAR SPHERE OF INFLUENCE AT THE
# TIME OF IGNITION. INITIALLY A CONIC TRAJECTORY IS DETERMINED AND RESULTING IGNITION AND REENTRY PARAMETERS ARE # TIME OF IGNITION. INITIALLY A CONIC TRAJECTORY IS DETERMINED AND RESULTING IGNITION AND REENTRY PARAMETERS ARE
# DISPLAYED TO THE ASTRONAUT. THEN IF THE ASTRONAUT SO DESIRES, A PRECISION TRAJECTORY IS DETERMINED WTIH THE # DISPLAYED TO THE ASTRONAUT. THEN IF THE ASTRONAUT SO DESIRES, A PRECISION TRAJECTORY IS DETERMINED WITH THE
# RESULTING IGNITION AND REENTRY PARAMETERS DISPLAYED. UPON FINAL ACCEPTANCE BY THE ASTRONAUT, THE PROGRAM # RESULTING IGNITION AND REENTRY PARAMETERS DISPLAYED. UPON FINAL ACCEPTANCE BY THE ASTRONAUT, THE PROGRAM
# COMPUTES AND STORES THE TARGET PARAMETERS FOR RETURN TO EARTH FOR USE BY SPS PROGRAM (P40) OR RCS PROGRAM (P41). # COMPUTES AND STORES THE TARGET PARAMETERS FOR RETURN TO EARTH FOR USE BY SPS PROGRAM (P40) OR RCS PROGRAM (P41).
# #

View File

@ -318,7 +318,7 @@ V06N89* VN 0689
# FUNCTION -- TO DISPLAY THE LANDING SITE LATITUDE, # FUNCTION -- TO DISPLAY THE LANDING SITE LATITUDE,
# LONGITUDE AND ALTITUDE. TO ACCEPT NEW DATA VIA # LONGITUDE AND ALTITUDE. TO ACCEPT NEW DATA VIA
# THE KEYBOARD. TO COMPUT THE LANDING SITE # THE KEYBOARD. TO COMPUT THE LANDING SITE
# ORIENTATIION FOR P52 OR P54. # ORIENTATION FOR P52 OR P54.
# #
# LET: # LET:
# RLS = LANDING SITE VECTOR IN REF COORDINATES # RLS = LANDING SITE VECTOR IN REF COORDINATES
@ -1633,7 +1633,7 @@ MKDNCDR ECADR MARKDOWN
# MOD. NO. 2 21 DEC 66 # MOD. NO. 2 21 DEC 66
# MOD. BY STURLAUGSON # MOD. BY STURLAUGSON
# #
# FUNCTIONAL DESCRIPTIION: # FUNCTIONAL DESCRIPTION:
# #
# TO PERFORM A SATISFACTORY NUMBER OF SIGHTING MARKS FOR THE REQUESTING PROGRAM (OR ROUTINE). SIGHTINGS # TO PERFORM A SATISFACTORY NUMBER OF SIGHTING MARKS FOR THE REQUESTING PROGRAM (OR ROUTINE). SIGHTINGS
# CAN BE MADE ON A STAR OR LANDMARK. WHEN THE CMC ACCEPTS A MARK IT RECORDS AND STORES 5 ANGLES (3 ICDUS AND 2 # CAN BE MADE ON A STAR OR LANDMARK. WHEN THE CMC ACCEPTS A MARK IT RECORDS AND STORES 5 ANGLES (3 ICDUS AND 2
@ -1682,7 +1682,7 @@ R53A CA MARKINDX # NUMBER OF MARKS
CADR OPTSTALL CADR OPTSTALL
TC CURTAINS TC CURTAINS
INDEX MARKSTAT INDEX MARKSTAT
CCS QPRET # NUMNBER OF MARKS ACTUALLY DONE CCS QPRET # NUMBER OF MARKS ACTUALLY DONE
TCF R53B TCF R53B
TCF +2 # ZERO TCF +2 # ZERO
TCF +1 # CCS HOLE TCF +1 # CCS HOLE

View File

@ -343,7 +343,7 @@ POSECADR 2CADR CM/POSE
# MOD BY: R. HIRSCHKOP # MOD BY: R. HIRSCHKOP
# MOD NO: 2 MOD BY: RR BAIRNSFATHER DATE: 8 MAY 68 REVISED COMMENTS FOR COLOSSUS # MOD NO: 2 MOD BY: RR BAIRNSFATHER DATE: 8 MAY 68 REVISED COMMENTS FOR COLOSSUS
# FUNCTION: 1. TO START ENTRY GUIDANCE AT .05G SELECTING ROLL ATTITUDE, CONSTANT DRAG LEVEL, AND # FUNCTION: 1. TO START ENTRY GUIDANCE AT .05G SELECTING ROLL ATTITUDE, CONSTANT DRAG LEVEL, AND
# DRAG THRESHHOLD, KA, WHICH ARE KEYED TO THE .05G POINT. # DRAG THRESHOLD, KA, WHICH ARE KEYED TO THE .05G POINT.
# 2. SELECT FINAL PHASE P67 IF V < 27000 FPS WHEN .2G OCCURS. # 2. SELECT FINAL PHASE P67 IF V < 27000 FPS WHEN .2G OCCURS.
# 3. ITERATE FOR UP-CONTROL SOLUTION P65 IF V > 27000 FPS AND IF ALTITUDE RATE AND DRAG # 3. ITERATE FOR UP-CONTROL SOLUTION P65 IF V > 27000 FPS AND IF ALTITUDE RATE AND DRAG
# LEVEL CONDITIONS ARE SATISFIED. ENTER P65 WHEN CONSTANT DRAG CONTROLLER HAS BROUGHT RANGE # LEVEL CONDITIONS ARE SATISFIED. ENTER P65 WHEN CONSTANT DRAG CONTROLLER HAS BROUGHT RANGE
@ -950,7 +950,7 @@ DUMPFISH GOTO
# MOD NO: 2 MOD BY: RR BAIRNSFATHER DATE: 21 NOV 67 VARIABLE MU ADDED. # MOD NO: 2 MOD BY: RR BAIRNSFATHER DATE: 21 NOV 67 VARIABLE MU ADDED.
# MOD NO: 3 MOD BY: RR BAIRNSFATHER DATE: 21 MAR 68 ACCEPT DIFFERENT EARTH/MOON SCALE # MOD NO: 3 MOD BY: RR BAIRNSFATHER DATE: 21 MAR 68 ACCEPT DIFFERENT EARTH/MOON SCALE
# #
# FUNCTONAL DESCRIPTION: EARTH CENTERED VIS VIVA CALCULATION OF TERMINAL VELOCITY AND GAMMA (REL TO # FUNCTIONAL DESCRIPTION: EARTH CENTERED VIS VIVA CALCULATION OF TERMINAL VELOCITY AND GAMMA (REL TO
# HORIZONTAL) GIVEN THE SCALAR QUANTITIES: PRESENT RADIUS AND VELOCITY AND THE TERMINAL RADIUS. # HORIZONTAL) GIVEN THE SCALAR QUANTITIES: PRESENT RADIUS AND VELOCITY AND THE TERMINAL RADIUS.
# THE USER MUST APPEND PROPER SIGN TO GAMMA, SINCE IT IS CALCULATED AS A POSITIVE NUMBER. # THE USER MUST APPEND PROPER SIGN TO GAMMA, SINCE IT IS CALCULATED AS A POSITIVE NUMBER.
# THE EQUATIONS ARE # THE EQUATIONS ARE

View File

@ -37,7 +37,7 @@
# BEEN TRANSFORMED FROM LV TO REF COSYS). USING INTEGRVS, THE PROGRAM THEN INTEGRATES THE OTHER # BEEN TRANSFORMED FROM LV TO REF COSYS). USING INTEGRVS, THE PROGRAM THEN INTEGRATES THE OTHER
# VEHICLE STATE VECTOR TO THE STATE VECTOR OF THIS VEHICLE, THUS INSURING THAT THE W-MATRIX AND BOTH VEHICLE # VEHICLE STATE VECTOR TO THE STATE VECTOR OF THIS VEHICLE, THUS INSURING THAT THE W-MATRIX AND BOTH VEHICLE
# STATES CORRESPOND TO THE SAME TIME. # STATES CORRESPOND TO THE SAME TIME.
# 3) ERASABLE INIITIALIZATION REQUIRED -- NONE. # 3) ERASABLE INITIALIZATION REQUIRED -- NONE.
# 4) CALLING SEQUENCES AND EXIT MODES -- CALLED BY ASTRONAUT REQUEST THRU DSKY V 37 E 76E. # 4) CALLING SEQUENCES AND EXIT MODES -- CALLED BY ASTRONAUT REQUEST THRU DSKY V 37 E 76E.
# EXITS BY TCF ENDOFJOB. # EXITS BY TCF ENDOFJOB.
# 5) OUTPUT -- OTHER VEHICLE STATE VECTOR INTEGRATED TO TIG AND INCREMENTED BY DELTA V IN REF COSYS. # 5) OUTPUT -- OTHER VEHICLE STATE VECTOR INTEGRATED TO TIG AND INCREMENTED BY DELTA V IN REF COSYS.

View File

@ -99,7 +99,7 @@ DSPMMJOB EQUALS DSPMMJB
# WHERE EACH LETTER OR NUMBER STANTS FOR A BIT. THE G'S STAND FOR THE GROUP, OCTAL 1-7, THE P'S FOR THE PHASE, # WHERE EACH LETTER OR NUMBER STANTS FOR A BIT. THE G'S STAND FOR THE GROUP, OCTAL 1-7, THE P'S FOR THE PHASE,
# OCTAL 0 - 127. 0'S MUST BE 0. IF ONE WISHES TO HAVE THE TBASE OF GROUP G TO BE SET AT THIS TIME, # OCTAL 0 - 127. 0'S MUST BE 0. IF ONE WISHES TO HAVE THE TBASE OF GROUP G TO BE SET AT THIS TIME,
# T IS SET TO 1, OTHERWISE IT IS SET TO 0. SIMILARLY IF ONE WISHES TO SET LONGBASE, THEN L IS SET TO 1, OTHERWISE # T IS SET TO 1, OTHERWISE IT IS SET TO 0. SIMILARLY IF ONE WISHES TO SET LONGBASE, THEN L IS SET TO 1, OTHERWISE
# IT IS SET TO 0. SOME EXAMLES, # IT IS SET TO 0. SOME EXAMPLES,
# TC PHASCHNG # THIS WILL CAUSE GROUP 3 TO BE SET TO 0, # TC PHASCHNG # THIS WILL CAUSE GROUP 3 TO BE SET TO 0,
# OCT 00003 # MAKING GROUP 3 INACTIVE # OCT 00003 # MAKING GROUP 3 INACTIVE
# #

View File

@ -84,7 +84,7 @@
# Page 308 # Page 308
# 2) EXTENDED VERBS TO TO THE EXTENDED VERB FAN AS PART OF THE # 2) EXTENDED VERBS TO TO THE EXTENDED VERB FAN AS PART OF THE
# PINBALL EXECUTIVE JOB WITH PRIORITY 30000. IT IS THE # PINBALL EXECUTIVE JOB WITH PRIORITY 30000. IT IS THE
# RESPONSIBILITY OF THE EXTEDED VERB CALLED TO EVENTUALLY # RESPONSIBILITY OF THE EXTENDED VERB CALLED TO EVENTUALLY
# CHANGE PRIORITY (IF NECESSARY) AD DO AN ENDOFJOB. # CHANGE PRIORITY (IF NECESSARY) AD DO AN ENDOFJOB.
# ALSO PINBALL IS A NOVAC JOB. EBANK SET FOR COMMON. # ALSO PINBALL IS A NOVAC JOB. EBANK SET FOR COMMON.
# 3) VERB 37. CHANGE OF PROGRAM (MAJOR MODE) CALLS `V37' IN THE # 3) VERB 37. CHANGE OF PROGRAM (MAJOR MODE) CALLS `V37' IN THE
@ -1128,7 +1128,7 @@ GODSPALM TC POSTJUMP
# S'S ARE THE SF ROUTINE 1 CODE NUMBER # S'S ARE THE SF ROUTINE 1 CODE NUMBER
# #
# IN OCTAL DISPLAY AND LOAD (OCT OR DEC) VERBS, EXCLUDE USE OF VERBS WHOSE # IN OCTAL DISPLAY AND LOAD (OCT OR DEC) VERBS, EXCLUDE USE OF VERBS WHOSE
# COMPONENT NUMBER IS GREATER THAN THE NUMBER OF COMONENTS IN NOUN. # COMPONENT NUMBER IS GREATER THAN THE NUMBER OF COMPONENTS IN NOUN.
# (ALL MACHINE ADDRESS TO BE SPECIFIED NOUNS ARE 3 COMPONENT.) # (ALL MACHINE ADDRESS TO BE SPECIFIED NOUNS ARE 3 COMPONENT.)
# #
# IN MULTI-COMPONENT LOAD VERBS, NO MIXING OF OCTAL AND DECIMAL DATA # IN MULTI-COMPONENT LOAD VERBS, NO MIXING OF OCTAL AND DECIMAL DATA
@ -2817,7 +2817,7 @@ SETVAC CAF TCFINDVC
# VBRQWAIT ENTERS REQUEST TO WAITLIST FOR ANY ADDRESS WITH ANY DELAY. # VBRQWAIT ENTERS REQUEST TO WAITLIST FOR ANY ADDRESS WITH ANY DELAY.
# IT DOES ENDOFJOB AFTER ENTERING REQUEST. DISPLAY SYST IS RELEASED. # IT DOES ENDOFJOB AFTER ENTERING REQUEST. DISPLAY SYST IS RELEASED.
# IT ASSUMES NOUN 26 HAS BEEN PRELOADED WTIH # IT ASSUMES NOUN 26 HAS BEEN PRELOADED WITH
# COMPONENT 1 DELAY (LOW BITS) # COMPONENT 1 DELAY (LOW BITS)
# COMPONENT 2 TASK ADRES (12 BIT) # COMPONENT 2 TASK ADRES (12 BIT)
# COMPONENT 3 BBCON # COMPONENT 3 BBCON
@ -2921,11 +2921,11 @@ ENDRELDS EQUALS
# PLACE 0VVVVVVVNNNNNNN INTO A. # PLACE 0VVVVVVVNNNNNNN INTO A.
# V'S ARE THE 7-BIT VERB CODE. N'S ARE THE 7-BIT NOUN CODE. # V'S ARE THE 7-BIT VERB CODE. N'S ARE THE 7-BIT NOUN CODE.
# #
# IF NVSUB IS CALLED WTIH THE FOLLOWING NEGATIVE NUMBERS (RATHER THAN THE # IF NVSUB IS CALLED WITH THE FOLLOWING NEGATIVE NUMBERS (RATHER THAN THE
# VERB-NOUN CODE) IN A, THEN THE DISPLAY IS BLANKED AS FOLLOWS --- # VERB-NOUN CODE) IN A, THEN THE DISPLAY IS BLANKED AS FOLLOWS ---
# -4 FULL BLANK, -3 LEAVE MODE, -2 LEAVE MODE AND VERB, -1 BLANK R'S ONLY. # -4 FULL BLANK, -3 LEAVE MODE, -2 LEAVE MODE AND VERB, -1 BLANK R'S ONLY.
# #
# NVSUB CAN BE USED WTIH MACHINE CADR TO BE SPECIFIED BY PLACING THE CADR INTO # NVSUB CAN BE USED WITH MACHINE CADR TO BE SPECIFIED BY PLACING THE CADR INTO
# MPAC+2 BEFORE THE STANDARD NVSUB CALL. # MPAC+2 BEFORE THE STANDARD NVSUB CALL.
# #
# NVSUB RETURNS TO 2+ CALLING LOC AFTER PERFORMING TASK, IF DISPLAY # NVSUB RETURNS TO 2+ CALLING LOC AFTER PERFORMING TASK, IF DISPLAY
@ -2942,7 +2942,7 @@ ENDRELDS EQUALS
# THE DISPLAY SYSTEM IS BLOCKED BY THE DEPRESSION OF ANY # THE DISPLAY SYSTEM IS BLOCKED BY THE DEPRESSION OF ANY
# KEY, EXCEPT ERROR LIGHT RESET. # KEY, EXCEPT ERROR LIGHT RESET.
# IT IS RELEASED BY THE KEY RELEASE BUTTON, ALL EXTENDED VERBS, # IT IS RELEASED BY THE KEY RELEASE BUTTON, ALL EXTENDED VERBS,
# PROCED WITOHOUT DATA, TERMINATE, RESEQUENCE, INITIALIZE EXECUTIVE, # PROCEED WITHOUT DATA, TERMINATE, RESEQUENCE, INITIALIZE EXECUTIVE,
# RECALL PART OF RECALTST IF ENDIDLE WAS USED, # RECALL PART OF RECALTST IF ENDIDLE WAS USED,
# VB = REQUEST EXECUTIVE, VB = REQUEST WAITLIST, # VB = REQUEST EXECUTIVE, VB = REQUEST WAITLIST,
# MONITOR SET UP. # MONITOR SET UP.
@ -2960,7 +2960,7 @@ ENDRELDS EQUALS
# (SIMILARLY FOR PLEASE MARK). FIRST PLACE THE CODED NUMBER FOR WHAT # (SIMILARLY FOR PLEASE MARK). FIRST PLACE THE CODED NUMBER FOR WHAT
# ACTION IS DESIRED OF OPERATOR INTO THEREGISTERS REFERRED TO BY THE # ACTION IS DESIRED OF OPERATOR INTO THEREGISTERS REFERRED TO BY THE
# `CHECKLIST' NOUN. GO TO NVSUB WITH A DISPLAY VERB AND THE `CHECKLIST' # `CHECKLIST' NOUN. GO TO NVSUB WITH A DISPLAY VERB AND THE `CHECKLIST'
# NOUN. GO TO NVSUB AGAIN WTIH THE `PLEASE PERFORM' VERB AND ZEROS IN THE # NOUN. GO TO NVSUB AGAIN WITH THE `PLEASE PERFORM' VERB AND ZEROS IN THE
# LOW 7 BITS. THIS `PASTES UP' THE `PLEASE PERFORM' VERB INTO THE VERB # LOW 7 BITS. THIS `PASTES UP' THE `PLEASE PERFORM' VERB INTO THE VERB
# LIGHTS. # LIGHTS.
# #

View File

@ -120,7 +120,7 @@
# (WHICH ARE IN A SEPARATE BANK FROM THE REST OF PINBALL). THESE READING # (WHICH ARE IN A SEPARATE BANK FROM THE REST OF PINBALL). THESE READING
# ROUTINES ARE IN THE SAME BANK AS THE TABLES. THEY ARE CALLED BY DXCH Z. # ROUTINES ARE IN THE SAME BANK AS THE TABLES. THEY ARE CALLED BY DXCH Z.
# LODNNTAB LOADS NNADTEM WTIH THE NNADTAB ENTRY, NNTYPTEM WITH THE # LODNNTAB LOADS NNADTEM WITH THE NNADTAB ENTRY, NNTYPTEM WITH THE
# NNTYPTAB ENTRY. IF THE NOUN IS MIXED, IDADITEM IS LOADED WITH THE FIRST # NNTYPTAB ENTRY. IF THE NOUN IS MIXED, IDADITEM IS LOADED WITH THE FIRST
# IDADDTAB ENTRY, IDAD2TEM THE SECOND IDADDTAB ENTRY, IDAD3TEM THE THIRD # IDADDTAB ENTRY, IDAD2TEM THE SECOND IDADDTAB ENTRY, IDAD3TEM THE THIRD
# IDADDTAB ENTRY, RUTMXTEM WITH THE RUTMXTAB ENTRY. MIXBR IS SET FOR # IDADDTAB ENTRY, RUTMXTEM WITH THE RUTMXTAB ENTRY. MIXBR IS SET FOR
@ -165,7 +165,7 @@ LODNLV DXCH IDAD2TEM # PUT RETURN INFO INTO A, L.
MIXCON = OCT50 # FIRST MIXED NOUN =40. (DEC 40) MIXCON = OCT50 # FIRST MIXED NOUN =40. (DEC 40)
# GTSFOUT LOADS SFTEMP1, SFTEMP2 WTIH THE DP SFOUTAB ENTRIES. # GTSFOUT LOADS SFTEMP1, SFTEMP2 WITH THE DP SFOUTAB ENTRIES.
# Page 271 # Page 271
GTSFOUT DXCH SFTEMP1 # 2X (SFCONUM) ARRIVES IN SFTEMP1. GTSFOUT DXCH SFTEMP1 # 2X (SFCONUM) ARRIVES IN SFTEMP1.
@ -214,7 +214,7 @@ NNADTAB OCT 00000 # 00 NOT IN USE
OCT 00000 # 23 SPARE OCT 00000 # 23 SPARE
ECADR DSPTEM2 +1 # 24 DELTA TIME FOR AGC CLOCK (HRS,MIN,SEC) ECADR DSPTEM2 +1 # 24 DELTA TIME FOR AGC CLOCK (HRS,MIN,SEC)
ECADR DSPTEM1 # 25 CHECKLIST ECADR DSPTEM1 # 25 CHECKLIST
# (USED WTIH PLEASE PERFORM ONLY) # (USED WITH PLEASE PERFORM ONLY)
ECADR DSPTEM1 # 26 PRIO/DELAY, ADRES, BBCON ECADR DSPTEM1 # 26 PRIO/DELAY, ADRES, BBCON
ECADR SMODE # 27 SELF TEST ON/OFF SWITCH ECADR SMODE # 27 SELF TEST ON/OFF SWITCH
# Page 272 # Page 272
@ -588,7 +588,7 @@ SFOUTAB OCT 05174 # WHOLE, DP TIME (SEC)
OCT 15340 OCT 15340
OCT 01031 # VELOCITY3 (POINT BETWN BITS 7-8) OCT 01031 # VELOCITY3 (POINT BETWN BITS 7-8)
OCT 21032 OCT 21032
OCT 34631 # ELEVATION DETREES OCT 34631 # ELEVATION DEGREES
OCT 23146 OCT 23146
OCT 14340 # TRIM DEGREES OCT 14340 # TRIM DEGREES
OCT 24145 OCT 24145

View File

@ -159,7 +159,7 @@ V06N18 VN 0618
# BEGINNING WITH THE LOCATION CALLED SCAXIS. THE COMPONENTS OF THIS VECTOR ARE GIVEN IN SPACECRAFT COORDINATES. # BEGINNING WITH THE LOCATION CALLED SCAXIS. THE COMPONENTS OF THIS VECTOR ARE GIVEN IN SPACECRAFT COORDINATES.
# THE DIRECTION IN WHICH THIS AXIS IS TO BE POINTED MUST APPEAR AS A HALF UNIT DOUBLE PRECISION VECTOR IN # THE DIRECTION IN WHICH THIS AXIS IS TO BE POINTED MUST APPEAR AS A HALF UNIT DOUBLE PRECISION VECTOR IN
# SUCCESSIVE LOCATIONS OF ERASABLE MEMORY BEGINNING WITH THE ADDRESS CALLED POINTVSM. THE COMPONENTS OF THIS # SUCCESSIVE LOCATIONS OF ERASABLE MEMORY BEGINNING WITH THE ADDRESS CALLED POINTVSM. THE COMPONENTS OF THIS
# VECTOR ARE GIVEN IN STABLE MEMBER COORDINATES. WITH THIS INFORMTION VECPOINT COMPUTES A SET OF THREE GIMBAL # VECTOR ARE GIVEN IN STABLE MEMBER COORDINATES. WITH THIS INFORMATION VECPOINT COMPUTES A SET OF THREE GIMBAL
# ANGLES (2'S COMPLEMENT) CORRESPONDING TO THE CROSS-PRODUCT ROTATION BETWEEN SCAXIS AND POINTVSM AND STORES THEM # ANGLES (2'S COMPLEMENT) CORRESPONDING TO THE CROSS-PRODUCT ROTATION BETWEEN SCAXIS AND POINTVSM AND STORES THEM
# IN T(MPAC) BEFORE RETURNING TO THE CALLER. # IN T(MPAC) BEFORE RETURNING TO THE CALLER.
# #

View File

@ -295,7 +295,7 @@ TENTHSEK TS ATTSEC
# ALSO IGNORE AUTOMATIC STEERING # ALSO IGNORE AUTOMATIC STEERING
# SET = + BY # SET = + BY
# 1) INITIALIZATION PHASE OF AUTOPILOT # 1) INITIALIZATION PHASE OF AUTOPILOT
# 2) OCCURANCE OF RHC COMMANDS # 2) OCCURRENCE OF RHC COMMANDS
# 3) FREE MODE # 3) FREE MODE
# 4) SWITCH OVER TO ATTITUDE HOLD FROM AUTO # 4) SWITCH OVER TO ATTITUDE HOLD FROM AUTO
# WHILE DOING AUTOMATIC STEERING (IN THIS CASE # WHILE DOING AUTOMATIC STEERING (IN THIS CASE

View File

@ -136,7 +136,7 @@ TPMODE CAF ONE # MODE IS TP.
# Page 1510 # Page 1510
TC Q TC Q
INDEX A # OVERFLOW UNCORRECT AND IN MSU. INDEX A # OVERFLOW INCORRECT AND IN MSU.
CAF LIMITS CAF LIMITS
ADS MPAC ADS MPAC
TC Q TC Q

View File

@ -86,7 +86,7 @@
# (6) DELVTPI MAGNITUDE OF DELTA V AT SOI (SOR) TIME # (6) DELVTPI MAGNITUDE OF DELTA V AT SOI (SOR) TIME
# (7) DELVTPF MAGNITUDE OF DELTA V AT INTERCEPT TIME # (7) DELVTPF MAGNITUDE OF DELTA V AT INTERCEPT TIME
# (8) DELTA VELOCITY AT SOI (AND SOR) - LOCAL VERTICAL # (8) DELTA VELOCITY AT SOI (AND SOR) - LOCAL VERTICAL
# CORDINATES # COORDINATES
# #
# SUBROUTINES USED # SUBROUTINES USED
# #

View File

@ -520,7 +520,7 @@ REJECT3 CAF LOW9 # DECREMENT POINTER TO REJECT MARK
TC RESUME TC RESUME
# Page 232 # Page 232
# PROGRAM DESCRIPTON MKVB51 AND MKVB50 # PROGRAM DESCRIPTION MKVB51 AND MKVB50
# #
# AUTHOR: BARNERT DATE: 2-15-67 MOD: 0 # AUTHOR: BARNERT DATE: 2-15-67 MOD: 0
# PURPOSE: FLASH V51N70,V51N43, OR V51 TO REQUEST MARKING, # PURPOSE: FLASH V51N70,V51N43, OR V51 TO REQUEST MARKING,

View File

@ -577,7 +577,7 @@ NXTFL33 CCS RUPTREG2 # PROCESS POSSIBLE ADDITIONAL CHANGES.
# #
# ERASABLE INITIALIZATION: # ERASABLE INITIALIZATION:
# 1) FRESH START OR RESTART WITH NO GROUPS ACTIVE: C(CDUZ) = 0, IMODES30 BIT 6 = 0, IMODES33 BIT 1 = 0. # 1) FRESH START OR RESTART WITH NO GROUPS ACTIVE: C(CDUZ) = 0, IMODES30 BIT 6 = 0, IMODES33 BIT 1 = 0.
# 2) RESTART WTIH GROUPS ACTIVE: SAME AS FRESH START EXCEPT C(CDUZ) NOT CHANGED SO GIMBAL MONITOR # 2) RESTART WITH GROUPS ACTIVE: SAME AS FRESH START EXCEPT C(CDUZ) NOT CHANGED SO GIMBAL MONITOR
# PROCEEDS AS BEFORE. # PROCEEDS AS BEFORE.
# #
# ALARMS: 1) MGA REGION (2) CAUSES GIMBAL LOCK LAMP TO BE LIT. # ALARMS: 1) MGA REGION (2) CAUSES GIMBAL LOCK LAMP TO BE LIT.
@ -863,7 +863,7 @@ IMUOP2 CAF BIT2 # SEE IF FAILED ISS TURN-ON SEQ IN PROG.
# #
# JOBS OR TASKS INITIATED: NONE. # JOBS OR TASKS INITIATED: NONE.
# #
# SUBROUTINES CALLED: 1) SETISSW, AND 2) ALARM (SEE FUNCITONAL DESCRIPTION). # SUBROUTINES CALLED: 1) SETISSW, AND 2) ALARM (SEE FUNCTIONAL DESCRIPTION).
# #
# ERASABLE INITIALIZATION: SEE IMUMON FOR INITIALIZATION OF IMODES30. THE RELEVANT BITS ARE 5, 7, 8, 9, AND 10. # ERASABLE INITIALIZATION: SEE IMUMON FOR INITIALIZATION OF IMODES30. THE RELEVANT BITS ARE 5, 7, 8, 9, AND 10.
# #

View File

@ -31,7 +31,7 @@
# Page 1373 # Page 1373
# THE TFF SUBROUTINES MAY BE USED IN EITHER EARTH OR MOON CENTERED COORDINATES. THE TFF ROUTINES NEVER # THE TFF SUBROUTINES MAY BE USED IN EITHER EARTH OR MOON CENTERED COORDINATES. THE TFF ROUTINES NEVER
# KNOW WHICH ORIGIN APPLIES. IT IS THE USER WHO KNOWS, AND WHO SUPPLIES RONE, VONE, AND 1/SQRT(MU) AT THE # KNOW WHICH ORIGIN APPLIES. IT IS THE USER WHO KNOWS, AND WHO SUPPLIES RONE, VONE, AND 1/SQRT(MU) AT THE
# APPROPIRATE SCALE LEVEL FOR THE PROPER PRIMARY BODY. # APPROPRIATE SCALE LEVEL FOR THE PROPER PRIMARY BODY.
# #
# EARTH ORIGIN POSITION -29 METERS # EARTH ORIGIN POSITION -29 METERS
# VELOCITY -7 METERS/CENTISECOND # VELOCITY -7 METERS/CENTISECOND
@ -81,7 +81,7 @@ NRMAG = 32D # PRESENT RADIUS M E: (-29+NR)
TFFX = 34D # TFFX = 34D #
TFFTEM = 36D # TEMPORARY TFFTEM = 36D # TEMPORARY
# Page 1374 # Page 1374
# REGISTERS S1, S2 ARE UNTOUCED BY ANY TFF SUBROUTINE # REGISTERS S1, S2 ARE UNTOUCHED BY ANY TFF SUBROUTINE
# INDEX REGISTERS X1, X2 ARE USED BY ALL TFF SUBROUTINES. THEY ARE ESTAB- # INDEX REGISTERS X1, X2 ARE USED BY ALL TFF SUBROUTINES. THEY ARE ESTAB-
# LISHED IN TFF/CONIC AND MUST BE PRESERVED BETWEEN CALLS TO SUBSEQUENT # LISHED IN TFF/CONIC AND MUST BE PRESERVED BETWEEN CALLS TO SUBSEQUENT
# SUBROUTINES. # SUBROUTINES.
@ -341,7 +341,7 @@ DUMPRPRA RVQ
# 2 3 2 # 2 3 2
# 1/3 - X/5 + X /7 - X /8 ... (X < 1.0) # 1/3 - X/5 + X /7 - X /8 ... (X < 1.0)
# #
# CALLING SEQUENC: TIME TO RTERM TIME TO PERIGEE # CALLING SEQUENCE: TIME TO RTERM TIME TO PERIGEE
# CALL CALL # CALL CALL
# CALCTFF CALCTPER # CALCTFF CALCTPER
# C(MPAC) = TERMNL RAD M C(MPAC) = PERIGEE RAD M # C(MPAC) = TERMNL RAD M C(MPAC) = PERIGEE RAD M

View File

@ -100,7 +100,7 @@ ROLLPREP CAE CDUX # UPDATE ROLL LADDERS (NO NEED TO RESTART-
XCH OGANOW # PROTECT, SINCE ROLL DAPS RE-START) XCH OGANOW # PROTECT, SINCE ROLL DAPS RE-START)
XCH OGAPAST XCH OGAPAST
CAE OGAD # PREPARE ROLL FDAI NEEDLE WTIH FLY-TO CAE OGAD # PREPARE ROLL FDAI NEEDLE WITH FLY-TO
EXTEND # ERROR (COMMAND - MEASURED) EXTEND # ERROR (COMMAND - MEASURED)
MSU OGANOW MSU OGANOW
TS AK # FLY-TO OGA ERROR, SC.AT B-1 REVS TS AK # FLY-TO OGA ERROR, SC.AT B-1 REVS

View File

@ -122,7 +122,7 @@
# #
# OTHER INTERFACES....DOTVCON AND RCSDAPON (T5 BITS), ELRSKIP (CALLS IT) # OTHER INTERFACES....DOTVCON AND RCSDAPON (T5 BITS), ELRSKIP (CALLS IT)
# #
# ERASABLE ININTIALIZATION REQUIRED.... # ERASABLE INITIALIZATION REQUIRED....
# #
# *T5 BITS (1,0), TVCPHASE (-2,-1,0,1,2,3), TVCEXPHS (1 THRU 6) # *T5 BITS (1,0), TVCPHASE (-2,-1,0,1,2,3), TVCEXPHS (1 THRU 6)
# *TVC DAP VARIABLES # *TVC DAP VARIABLES

View File

@ -41,8 +41,8 @@
# IMMEDIATELY. IF NOT CSM/LM, PROGRAM EXITS WITH NO ACTION. # IMMEDIATELY. IF NOT CSM/LM, PROGRAM EXITS WITH NO ACTION.
# HACK (STROKE TEST) GENERATES THE WAVEFORM BY DUMPING PULSE BURSTS # HACK (STROKE TEST) GENERATES THE WAVEFORM BY DUMPING PULSE BURSTS
# OF PROPER SIGN AND IN PROPER SEQUENCE DIRECTLY INTO # OF PROPER SIGN AND IN PROPER SEQUENCE DIRECTLY INTO
# TVCPITCH, WORKING IN CONJUNCITON WITH BOTH PITCH AND YAW # TVCPITCH, WORKING IN CONJUNCTION WITH BOTH PITCH AND YAW
# TVC DAPS, WITH INTERMEDIAT WAITLIST CALLS. NOTE, HOWEVER # TVC DAPS, WITH INTERMEDIATE WAITLIST CALLS. NOTE, HOWEVER
# THAT THE STROKE TEST IS PERFORMED ONLY IN THE PITCH AXIS. # THAT THE STROKE TEST IS PERFORMED ONLY IN THE PITCH AXIS.
# AN EXAMPLE WAVEFORM IS GIVEN BELOW, TO DEMONSTRATE STROKE- # AN EXAMPLE WAVEFORM IS GIVEN BELOW, TO DEMONSTRATE STROKE-
# TEST PARAMETER SELECTION. # TEST PARAMETER SELECTION.

View File

@ -122,7 +122,7 @@
# V33E VERB 33 TO SIGNAL THAT THE STATE VECTOR IS READY TO BE STORED. # V33E VERB 33 TO SIGNAL THAT THE STATE VECTOR IS READY TO BE STORED.
# #
# 2. REFSMMAT (ALL DATA ENTRIES IN OCTAL) # 2. REFSMMAT (ALL DATA ENTRIES IN OCTAL)
# ENTRIES DATA DEFINITITIONS SCALE FACTORS: # ENTRIES DATA DEFINITIONS SCALE FACTORS:
# Page 1499 # Page 1499
# V71E CONTIGUOUS BLOCK UPDATE VERB # V71E CONTIGUOUS BLOCK UPDATE VERB
# 24E NUMBER OF COMPONENTS FOR REFSMMAT UPDATE # 24E NUMBER OF COMPONENTS FOR REFSMMAT UPDATE

View File

@ -243,7 +243,7 @@ OANB SETPD STQ
GOTO GOTO
GCTR GCTR
# Page 250 # Page 250
# SURFSTAR COMPUTES A STAR VECTOR IN SM COORDINAGES FOR LUNAR # SURFSTAR COMPUTES A STAR VECTOR IN SM COORDINATES FOR LUNAR
# SURFACE ALIGNMENT AND EXITS TO AVEIT TO AVERAGE STAR VECTORS. # SURFACE ALIGNMENT AND EXITS TO AVEIT TO AVERAGE STAR VECTORS.
# #
# GIVEN X-MARK PLANE 1/4 VEC IN NB AT 18D OF LOCAL VAC # GIVEN X-MARK PLANE 1/4 VEC IN NB AT 18D OF LOCAL VAC

View File

@ -890,7 +890,7 @@ REP40ALM CAF V05N09 # (14)
TCF +2 # PROCEED CHECK FOR P42 TCF +2 # PROCEED CHECK FOR P42
TCF REP40ALM # V32E REDISPLAY ALARM TCF REP40ALM # V32E REDISPLAY ALARM
INDEX WHICH # FOR P42, ALLOW CREW TO PRECEED EVEN INDEX WHICH # FOR P42, ALLOW CREW TO PROCEED EVEN
TCF 14 # THOUGH VEHICLE IS UNSTAGED. TCF 14 # THOUGH VEHICLE IS UNSTAGED.
# ******************************** # ********************************

View File

@ -115,7 +115,7 @@
# SAME AS ECADR, BUT USED WHEN THE WORD ADDRESSED IS THE LEFT # SAME AS ECADR, BUT USED WHEN THE WORD ADDRESSED IS THE LEFT
# HALF OF A DOUBLE-PRECISION WORD FOR DOWN TELEMETRY. # HALF OF A DOUBLE-PRECISION WORD FOR DOWN TELEMETRY.
# B. 2DNADR - 6DNADR N-WORD DOWNLIST ADDRESS, N = 2 - 6. # B. 2DNADR - 6DNADR N-WORD DOWNLIST ADDRESS, N = 2 - 6.
# SAME AS 1DNADR, BUT WTIH THE 4 UNUSED BITS OF THE ECADR FORMAT # SAME AS 1DNADR, BUT WITH THE 4 UNUSED BITS OF THE ECADR FORMAT
# FILLED IN WITH 0001-0101. USED TO POINT TO A LIST OF N DOUBLE- # FILLED IN WITH 0001-0101. USED TO POINT TO A LIST OF N DOUBLE-
# PRECISION WORDS, STORED CONSECUTIVELY, FOR DOWN TELEMETRY. # PRECISION WORDS, STORED CONSECUTIVELY, FOR DOWN TELEMETRY.
# C. DNCHAN DOWNLIST CHANNEL ADDRESS. # C. DNCHAN DOWNLIST CHANNEL ADDRESS.
@ -339,7 +339,7 @@ SUBLIST EQUALS DNQ
# AFTER KEYING IN V74E THE CURRENT DOWNLIST WILL BE IMMEDIATELY TERMINATED AND THE DOWNLINK ERASABLE DUMP # AFTER KEYING IN V74E THE CURRENT DOWNLIST WILL BE IMMEDIATELY TERMINATED AND THE DOWNLINK ERASABLE DUMP
# WILL BEGIN. # WILL BEGIN.
# #
# ONCE INITITIATED THE DOWNLINK ERASABLE DUMP CAN BE TERMINATED (AND INTERRUPTED DOWNLIST REINSTATED) ONLY # ONCE INITIATED THE DOWNLINK ERASABLE DUMP CAN BE TERMINATED (AND INTERRUPTED DOWNLIST REINSTATED) ONLY
# BY THE FOLLOWING: # BY THE FOLLOWING:
# #
# 1. A FRESH START # 1. A FRESH START

View File

@ -289,7 +289,7 @@ DELGMBLP TS TEM2
TS CPHI # OUTPUTS TO NOUN22 TS CPHI # OUTPUTS TO NOUN22
EXTEND EXTEND
INDEX TEM2 INDEX TEM2
MSU CDUXD # NO MATTER THAT THESE SLIGHLTY DIFFERENT MSU CDUXD # NO MATTER THAT THESE SLIGHTLY DIFFERENT
COM # FROM WHEN WE INITIALLY FETCHED THEM COM # FROM WHEN WE INITIALLY FETCHED THEM
INDEX TEM2 INDEX TEM2
TS -DELGMB # -UNLIMITED GIMBAL ANGLE CHGS, 1'S, PI TS -DELGMB # -UNLIMITED GIMBAL ANGLE CHGS, 1'S, PI

View File

@ -32,7 +32,7 @@
# BY -- GEORGE SCHMIDT IL7-146 EXT 1126 # BY -- GEORGE SCHMIDT IL7-146 EXT 1126
# MOD NO-ZERO # MOD NO-ZERO
# #
# FUNCITONAL DESCRIPTION # FUNCTIONAL DESCRIPTION
# #
# THIS SECTION CONSISTS OF THE FILTER FOR THE GYRO DRIFT TESTS. NO COMPASS # THIS SECTION CONSISTS OF THE FILTER FOR THE GYRO DRIFT TESTS. NO COMPASS
# IS DONE IN LEM. FOR A DESCRIPTION OF THE FILTER SEE E-1973. THIS # IS DONE IN LEM. FOR A DESCRIPTION OF THE FILTER SEE E-1973. THIS

View File

@ -415,7 +415,7 @@ REDES1 DLOAD DSU
# VELOCITY RELATIVE TO THE SURFACE # VELOCITY RELATIVE TO THE SURFACE
# _______ _ _ __ # _______ _ _ __
# ANGTERM = V + R * WM # ANGTERM = V + R * WM
# STATE IN GUIDANCE COORDINTES: # STATE IN GUIDANCE COORDINATES:
# ___ * _ ____ # ___ * _ ____
# RGU = CG (R - LAND) # RGU = CG (R - LAND)
# ___ * _ __ _ # ___ * _ __ _
@ -1257,11 +1257,11 @@ DESCBITS MASK BIT7 # COME HERE FROM MARKRUPT CODING WITH BIT
# #
# PRECAUTION: ROOTPSRS MAKES NO CHECKS FOR OVERFLOW OR FOR IMPROPER USAGE. IMPROPER USAGE COULD # PRECAUTION: ROOTPSRS MAKES NO CHECKS FOR OVERFLOW OR FOR IMPROPER USAGE. IMPROPER USAGE COULD
# PRECLUDE CONVERGENCE OR REQUIRE EXCESSIVE ITERATIONS. AS A SPECIFIC EXAMPLE, ROOTPSRS FORMS A DERIVATIVE # PRECLUDE CONVERGENCE OR REQUIRE EXCESSIVE ITERATIONS. AS A SPECIFIC EXAMPLE, ROOTPSRS FORMS A DERIVATIVE
# COEFFICIENT TABLE BY MULTIPLYINE EACH A(I) BY I, WHERE I RANGES FROM 1 TO N. IF AN ELEMENT OF THE DERIVATIVE # COEFFICIENT TABLE BY MULTIPLYING EACH A(I) BY I, WHERE I RANGES FROM 1 TO N. IF AN ELEMENT OF THE DERIVATIVE
# COEFFICIENT TABLE = 1 OR >1 IN MAGNITUDE, ONLY THE EXCESS IS RETAINED. ROOTPSRS MAY CONVERGE ON THE COREECT # COEFFICIENT TABLE = 1 OR >1 IN MAGNITUDE, ONLY THE EXCESS IS RETAINED. ROOTPSRS MAY CONVERGE ON THE CORRECT
# ROOT NONETHELESS, BUT IT MAY TAKE AN EXCESSIVE NUMBER OF ITERATIONS. THEREFORE THE USER SHOULD RECOGNIZE: # ROOT NONETHELESS, BUT IT MAY TAKE AN EXCESSIVE NUMBER OF ITERATIONS. THEREFORE THE USER SHOULD RECOGNIZE:
# 1. USER'S RESPONSIBILITY TO ASSUR THAT I X A(I) < 1 IN MAGNITUDE FOR ALL I. # 1. USER'S RESPONSIBILITY TO ASSUR THAT I X A(I) < 1 IN MAGNITUDE FOR ALL I.
# 2. USER'S RESPONSIBILITY TO ASSURE OVERFLOW WILL NOT OCCUR IN EVALUTATING EITHER THE RESIDUAL OR THE DERIVATIVE # 2. USER'S RESPONSIBILITY TO ASSURE OVERFLOW WILL NOT OCCUR IN EVALUATING EITHER THE RESIDUAL OR THE DERIVATIVE
# POWER SERIES. THIS OVERFLOW WOULD BE PRODUCED BY SUBROUTINE POWRSERS, CALLED BY ROOTPSRS, AND MIGHT NOT # POWER SERIES. THIS OVERFLOW WOULD BE PRODUCED BY SUBROUTINE POWRSERS, CALLED BY ROOTPSRS, AND MIGHT NOT
# PRECLUDE EVENTUAL CONVERGENCE. # PRECLUDE EVENTUAL CONVERGENCE.
# 3. AT PRESENT, ERASABLE LOCATIONS ARE RESERVED ONLY FOR N UP TO 5. AN N IN EXCESS OF 5 WILL PRODUCE CHAOS. # 3. AT PRESENT, ERASABLE LOCATIONS ARE RESERVED ONLY FOR N UP TO 5. AN N IN EXCESS OF 5 WILL PRODUCE CHAOS.

View File

@ -964,7 +964,7 @@ HEADTJET CA ZERO
-FOURDEG DEC -.08888 -FOURDEG DEC -.08888
# Page 1440 # Page 1440
# JET POLICY CONTSTRUCTION SUBROUTINE # JET POLICY CONSTRUCTION SUBROUTINE
# #
# INPUT: ROTINDEX, NUMBERT # INPUT: ROTINDEX, NUMBERT
# #

View File

@ -90,7 +90,7 @@ V06N33 VN 0633
V06N42 VN 0642 V06N42 VN 0642
# Page 616 # Page 616
# PROGRAM DESCRPTION S30.1 DATE 9NOV66 # PROGRAM DESCRIPTION S30.1 DATE 9NOV66
# MOD NO 1 LOG SECTION P30,P37 # MOD NO 1 LOG SECTION P30,P37
# MOD BY RAMA AIYAWAR ** # MOD BY RAMA AIYAWAR **
# #

View File

@ -34,7 +34,7 @@
# #
# PURPOSE # PURPOSE
# (1) TO CALCULATE PARAMETERS ASSOCIATED WTIH THE TIME FOLLOWING # (1) TO CALCULATE PARAMETERS ASSOCIATED WITH THE TIME FOLLOWING
# CONCENTRIC FLIGHT PLAN MANEUVERS -- THE CO-ELLIPTIC SEQUENCE # CONCENTRIC FLIGHT PLAN MANEUVERS -- THE CO-ELLIPTIC SEQUENCE
# INITIATION (CSI) MANEUVER AND THE CONSTANT DELTA ALTITUDE # INITIATION (CSI) MANEUVER AND THE CONSTANT DELTA ALTITUDE
# (CDH) MANEUVER. # (CDH) MANEUVER.

View File

@ -236,7 +236,7 @@ GOABORT TC INTPRET
TC DOWNFLAG TC DOWNFLAG
ADRES IDLEFLAG ADRES IDLEFLAG
TC UPFLAG # INSURE 4-JET TRANSLATION CAPABILIITY. TC UPFLAG # INSURE 4-JET TRANSLATION CAPABILITY.
ADRES ACC4-2FL ADRES ACC4-2FL
TC CHECKMM TC CHECKMM

View File

@ -476,7 +476,7 @@ QERRCALC CAE CDUY # Q-ERROR CALCULATION
TS DAPTEMP2 # SAVE FOR RERRCALC TS DAPTEMP2 # SAVE FOR RERRCALC
EXTEND EXTEND
MP M22 # (CDUZ-CDUZD)*M22 SCALED AT PI RADIANS MP M22 # (CDUZ-CDUZD)*M22 SCALED AT PI RADIANS
AD DELQEROR # KALCMANU INERFACE ERROR AD DELQEROR # KALCMANU INTERFACE ERROR
AD E AD E
XCH QERROR # SAVE Q-ERROR FOR EIGHT-BALL DISPLAY. XCH QERROR # SAVE Q-ERROR FOR EIGHT-BALL DISPLAY.
@ -487,7 +487,7 @@ RERRCALC CAE DAPTEMP1 # R-ERROR CALCULATION:
CAE DAPTEMP2 # SECOND TERM CALCULATION: CAE DAPTEMP2 # SECOND TERM CALCULATION:
EXTEND # CDU ANGLE -ANGLE DESIRED (Z-AXIS) EXTEND # CDU ANGLE -ANGLE DESIRED (Z-AXIS)
MP M32 # (CDUZ-CDUZD)*M32 SCALED AT PI RADIANS MP M32 # (CDUZ-CDUZD)*M32 SCALED AT PI RADIANS
AD DELREROR # KALCMANU INERFACE ERROR AD DELREROR # KALCMANU INTERFACE ERROR
AD E AD E
XCH RERROR # SAVE R-ERROR FOR EIGHT-BALL DISPLAY. XCH RERROR # SAVE R-ERROR FOR EIGHT-BALL DISPLAY.
TC Q TC Q
@ -538,7 +538,7 @@ TJLAW CA TJLAWADR
CADR SPSRCS # DETERMINE RCS CONTROL CADR SPSRCS # DETERMINE RCS CONTROL
RELINT RELINT
CAF FOUR # ALWAYS CALL FOR 2-JET CONTROL ABOUT U,V. CAF FOUR # ALWAYS CALL FOR 2-JET CONTROL ABOUT U,V.
TS NUMBERT # FALL THROUGH TO JET SLECTION, ETC. TS NUMBERT # FALL THROUGH TO JET SELECTION, ETC.
# Q,R-JET-SELECTION-LOGIC # Q,R-JET-SELECTION-LOGIC
# #

View File

@ -113,7 +113,7 @@ TPMODE CAF ONE # MODE IS TP.
TS MPAC # AND SKIP ON OVERFLOW. TS MPAC # AND SKIP ON OVERFLOW.
TC Q TC Q
INDEX A # OVERFLOW UNCORRECT AND IN MSU. INDEX A # OVERFLOW INCORRECT AND IN MSU.
CAF LIMITS CAF LIMITS
ADS MPAC ADS MPAC
TC Q TC Q

View File

@ -1067,7 +1067,7 @@ MUNRVG VLOAD VXSC
R1S R1S
VXV VSL2 VXV VSL2
WM WM
STODL DELVS # LUNAR ROTATION CORRECTON TERM*2(5) M/CS. STODL DELVS # LUNAR ROTATION CORRECTION TERM*2(5) M/CS.
36D 36D
DSU DSU
/LAND/ /LAND/

View File

@ -126,7 +126,7 @@ IGNALOOP DLOAD
# 10 # 10
# 2 (VGU - 16 VGU KIGNX/B4) # 2 (VGU - 16 VGU KIGNX/B4)
# 2 0 # 2 0
# Page 787 new page is actually one line earlier but this would put the indices on a seperate line # Page 787 new page is actually one line earlier but this would put the indices on a separate line
# disconnected from their respective variables # disconnected from their respective variables
# THE NUMERATOR IS SCALED IN METERS AT 2(28). THE DENOMINATOR IS A VELOCITY IN UNITS OF 2(10) M/CS. # THE NUMERATOR IS SCALED IN METERS AT 2(28). THE DENOMINATOR IS A VELOCITY IN UNITS OF 2(10) M/CS.
# THE QUOTIENT IS THUS A TIME IN UNITS OF 2(18) CENTISECONDS. THE FINAL SHIFT RESCALES TO UNITS OF 2(28) CS. # THE QUOTIENT IS THUS A TIME IN UNITS OF 2(18) CENTISECONDS. THE FINAL SHIFT RESCALES TO UNITS OF 2(28) CS.

View File

@ -131,7 +131,7 @@ DOIT CA PIF
CA TIME1 CA TIME1
TS TTHROT TS TTHROT
# SINCE /AF/ IS NOT AN INSTANTANEOUS ACELERATION, BUT RATHER AN "AVERAGE" OF THE ACCELERATION LEVELS DURING # SINCE /AF/ IS NOT AN INSTANTANEOUS ACCELERATION, BUT RATHER AN "AVERAGE" OF THE ACCELERATION LEVELS DURING
# THE PRECEEDING PIPA INTERVAL, AND SINCE FP IS COMPUTED DIRECTLY FROM /AF/, FP IN ORDER TO CORRESPOND TO THE # THE PRECEEDING PIPA INTERVAL, AND SINCE FP IS COMPUTED DIRECTLY FROM /AF/, FP IN ORDER TO CORRESPOND TO THE
# ACTUAL THRUST LEVEL AT THE END OF THE INTERVAL MUST BE WEIGHTED BY # ACTUAL THRUST LEVEL AT THE END OF THE INTERVAL MUST BE WEIGHTED BY
# #

View File

@ -31,7 +31,7 @@
# Page 1460 # Page 1460
# PROGRAM DESCRIPTION # PROGRAM DESCRIPTION
# DESIGNED BY: R. D. GOSS AND P. S. WEISSMAN # DESIGNED BY: R. D. GOSS AND P. S. WEISSMAN
# CODED BY: P. S. WEISSMAN, 28 FEBRURARY 1968 # CODED BY: P. S. WEISSMAN, 28 FEBRUARY 1968
# #
# TJETLAW IS CALLED AS A SUBROUTINE WHEN THE LEM IS NOT DOCKED AND THE AUTOPILOT IS IN THE AUTOMATIC OR # TJETLAW IS CALLED AS A SUBROUTINE WHEN THE LEM IS NOT DOCKED AND THE AUTOPILOT IS IN THE AUTOMATIC OR
# ATTITUDE-HOLD MODE TO CALCULATE THE JET-FIRING-TIME (TJET) REQUIRED FOR THE AXIS INDICATED BY AXISCTR: # ATTITUDE-HOLD MODE TO CALCULATE THE JET-FIRING-TIME (TJET) REQUIRED FOR THE AXIS INDICATED BY AXISCTR:

View File

@ -603,7 +603,7 @@ GMBLBITB OCTAL 06000 # INDEXED WRT GMBLBITA DO NOT MOVE *******
# SUBROUTINE ROOTCYCL: BY CRAIG WORK, 3 APRIL 68 # SUBROUTINE ROOTCYCL: BY CRAIG WORK, 3 APRIL 68
# #
# ROOTCYCL IS A SUBROUTINE WHICH EXECUTS ONE NEWTON SQUARE ALGORITHM ITERATION. THE INITIAL GUESS AT THE # ROOTCYCL IS A SUBROUTINE WHICH EXECUTES ONE NEWTON SQUARE ALGORITHM ITERATION. THE INITIAL GUESS AT THE
# SQUARE ROOT IS PRESUMED TO BE IN THE A REGISTER AND ONE-HALF THE SQUARE IS TAKEN FROM HALFARG. THE NEW APPROXIMATION # SQUARE ROOT IS PRESUMED TO BE IN THE A REGISTER AND ONE-HALF THE SQUARE IS TAKEN FROM HALFARG. THE NEW APPROXIMATION
# TO THE SQUARE ROOT IS RETURNED IN THE A REGISTER. DEBRIS: A, L, SR, SCRATCH. ROOTCYCL IS CALLED FROM # TO THE SQUARE ROOT IS RETURNED IN THE A REGISTER. DEBRIS: A, L, SR, SCRATCH. ROOTCYCL IS CALLED FROM
# LOCATION (LOC) BY A TC ROOTCYCL, AND RETURNS (TC Q) TO LOC +1. # LOCATION (LOC) BY A TC ROOTCYCL, AND RETURNS (TC Q) TO LOC +1.