Browse Source

Added labels to equation 6

main
Kenneth John Odle 11 months ago
parent
commit
4cd3b57761
  1. 25
      complete-the-square.tex

25
complete-the-square.tex

@ -111,7 +111,7 @@ For equations that are not easily factored, a general solution called ``the qua
For any equation of the form $ax^2+bx+c=0$, the solution can be found by using:
\begin{equation}
\begin{equation}\label{eq5}
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
\end{equation}
@ -156,17 +156,18 @@ Conventionally, we would write this as $x=-2+\sqrt{3}$ or $x=-2-\sqrt{3}$.
\noindent{}Here is the entire sequence all together:
\begin{align}\label{eq5}
\begin{split}
x^2+4x+1 &= 0 \\
x^2+4x &= -1 \\
x^2+4x &= 3 \\
(x+2)^2 &= 3 \\
\sqrt{(x+2)^2} &= \pm\sqrt{3} \\
x+2 &= \pm\sqrt{3} \\
x &= -2\pm\sqrt{3}
\end{split}
\end{align}
\begin{equation}\label{eq6}
\begin{aligned}
x^2+4x+1 &= 0 && && &&\text{Original equation}\\
x^2+4x &= -1 && && &&\text{Step 2}\\
x^2+4x &= 3 && && &&\text{Step 3}\\
(x+2)^2 &= 3 && && && \text{Step 4}\\
\sqrt{(x+2)^2} &= \pm\sqrt{3} && && && \text{Step 5}\\
x+2 &= \pm\sqrt{3} && && && \text{Step 5}\\
x &= -2\pm\sqrt{3} && && &&\text{Step 6}
%\end{split}
\end{aligned}
\end{equation}
\pagestyle{lastpage}% Remove the header from the last page; comment this out if the document ends on an odd-numbered page
Loading…
Cancel
Save