Added labels to equation 6
This commit is contained in:
parent
754cf7230a
commit
4cd3b57761
@ -111,7 +111,7 @@ For equations that are not easily factored, a general solution called ``the qua
|
||||
|
||||
For any equation of the form $ax^2+bx+c=0$, the solution can be found by using:
|
||||
|
||||
\begin{equation}
|
||||
\begin{equation}\label{eq5}
|
||||
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
|
||||
\end{equation}
|
||||
|
||||
@ -156,17 +156,18 @@ Conventionally, we would write this as $x=-2+\sqrt{3}$ or $x=-2-\sqrt{3}$.
|
||||
|
||||
\noindent{}Here is the entire sequence all together:
|
||||
|
||||
\begin{align}\label{eq5}
|
||||
\begin{split}
|
||||
x^2+4x+1 &= 0 \\
|
||||
x^2+4x &= -1 \\
|
||||
x^2+4x &= 3 \\
|
||||
(x+2)^2 &= 3 \\
|
||||
\sqrt{(x+2)^2} &= \pm\sqrt{3} \\
|
||||
x+2 &= \pm\sqrt{3} \\
|
||||
x &= -2\pm\sqrt{3}
|
||||
\end{split}
|
||||
\end{align}
|
||||
\begin{equation}\label{eq6}
|
||||
\begin{aligned}
|
||||
x^2+4x+1 &= 0 && && &&\text{Original equation}\\
|
||||
x^2+4x &= -1 && && &&\text{Step 2}\\
|
||||
x^2+4x &= 3 && && &&\text{Step 3}\\
|
||||
(x+2)^2 &= 3 && && && \text{Step 4}\\
|
||||
\sqrt{(x+2)^2} &= \pm\sqrt{3} && && && \text{Step 5}\\
|
||||
x+2 &= \pm\sqrt{3} && && && \text{Step 5}\\
|
||||
x &= -2\pm\sqrt{3} && && &&\text{Step 6}
|
||||
%\end{split}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\pagestyle{lastpage}% Remove the header from the last page; comment this out if the document ends on an odd-numbered page
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user