Fix all the typos! (and add some too)

This commit is contained in:
oldmud0 2016-07-11 07:35:15 -05:00
parent 6088e4655e
commit afa13e7364
78 changed files with 150 additions and 150 deletions

View File

@ -22,7 +22,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -121,7 +121,7 @@
# UPDATE PROGRAM # UPDATE PROGRAM
# RTB OP CODES # RTB OP CODES
# SYMBOL TABLE LISTING # SYMBOL TABLE LISTING
# UNREFERANCES SYMBOL LISTING # UNREFERENCED SYMBOL LISTING
# ERASABLE & EQUALS CROSS-REFERENCE TABLE # ERASABLE & EQUALS CROSS-REFERENCE TABLE
# SUMMARY OF SYMBOL TABLE LISTINGS # SUMMARY OF SYMBOL TABLE LISTINGS
# MEMORY TYPE & AVAILABILITY DISPLAY # MEMORY TYPE & AVAILABILITY DISPLAY
@ -254,11 +254,11 @@
# SCALE TYPE L (MIN/SEC) OR PP (2 INTEGERS). # SCALE TYPE L (MIN/SEC) OR PP (2 INTEGERS).
# IN THIS CASE VERBS 24 AND 25 ARE NOT ALLOWED, BUT VERBS 21, 22, OR 23 # IN THIS CASE VERBS 24 AND 25 ARE NOT ALLOWED, BUT VERBS 21, 22, OR 23
# MAY BE USED TO LOAD ANY O FTHE NOUN'S COMPONENTS WHICH ARE NOT OF THE # MAY BE USED TO LOAD ANY OF THE NOUN'S COMPONENTS WHICH ARE NOT OF THE
# ABOVE SCALE TYPES. # ABOVE SCALE TYPES.
# THE 'DEC ONLY' RESTRICTION MEANS ONLY DECIMAL OPERATION IS ALLOWED ON # THE 'DEC ONLY' RESTRICTION MEANS ONLY DECIMAL OPERATION IS ALLOWED ON
# EVERY COMPONENT IN THENOUN. (NOT THAT 'NO LOAD' IMLIES 'DEC ONLY'.) # EVERY COMPONENT IN THE NOUN. (NOT THAT 'NO LOAD' IMLIES 'DEC ONLY'.)
# NORMAL NOUNS COMPONENTS SCALE & DECIMAL POINT RESTRICTION # NORMAL NOUNS COMPONENTS SCALE & DECIMAL POINT RESTRICTION
# #

View File

@ -19,7 +19,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -69,7 +69,7 @@
# FUNCTIONAL DESCRIPTION -- # FUNCTIONAL DESCRIPTION --
# THIS SUBROUTINE, GIVEN AN INITIAL STATE VECTOR AND THE DESIRED TRANSFER TIME THROUGH WHICH THE STATE IS TO # THIS SUBROUTINE, GIVEN AN INITIAL STATE VECTOR AND THE DESIRED TRANSFER TIME THROUGH WHICH THE STATE IS TO
# BE UPDATED ALONG A CONIC TRAJECTORY, COMPUTES THE NEW, UPDATED STATE VECTOR. THE TRAJECTORY MAY BE ANY CONIC # BE UPDATED ALONG A CONIC TRAJECTORY, COMPUTES THE NEW, UPDATED STATE VECTOR. THE TRAJECTORY MAY BE ANY CONIC
# SECTION -- CIRCULAR, ELLIPTIC, PARABOLIC, HYPERPOLIC, OR RECTILINEAR WITH RESPECT TO THE EARTH OR THE MOON. THE # SECTION -- CIRCULAR, ELLIPTIC, PARABOLIC, HYPERBOLIC, OR RECTILINEAR WITH RESPECT TO THE EARTH OR THE MOON. THE
# USE OF THE SUBROUTINE CAN BE EXTENDED USING OTHER PRIMARY BODIES BY SIMPLE ADDITIONS TO THE MUTABLE WITHOUT # USE OF THE SUBROUTINE CAN BE EXTENDED USING OTHER PRIMARY BODIES BY SIMPLE ADDITIONS TO THE MUTABLE WITHOUT
# INTRODUCING ANY CODING CHANGES, ACCEPTING THE INHERENT SCALE FACTOR CHANGES IN POSITION AND VELOCITY. AN ITERATION # INTRODUCING ANY CODING CHANGES, ACCEPTING THE INHERENT SCALE FACTOR CHANGES IN POSITION AND VELOCITY. AN ITERATION
# TECHNIQUE IS UTILIZED IN THE COMPUTATION. # TECHNIQUE IS UTILIZED IN THE COMPUTATION.
@ -284,7 +284,7 @@
# FUNCTIONAL DESCRIPTION -- # FUNCTIONAL DESCRIPTION --
# THIS SUBROUTINE, GIVEN AN INITIAL STATE VECTOR AND A DESIRED TRUE-ANOMALY-DIFFERENCE THROUGH WHICH THE # THIS SUBROUTINE, GIVEN AN INITIAL STATE VECTOR AND A DESIRED TRUE-ANOMALY-DIFFERENCE THROUGH WHICH THE
# STATE IS TO BE UPDATED ALONG A CONIC TRAJECTORY, CALCULATES THE CORRESPONDING TIME-OF-FLIGHT AND, IN ADDITION, # STATE IS TO BE UPDATED ALONG A CONIC TRAJECTORY, CALCULATES THE CORRESPONDING TIME-OF-FLIGHT AND, IN ADDITION,
# PROVIDES THE OPTION OF COMUTING THE NEW UPDATED STATE VECTOR. THE RESULTING TRAJECTORY MAY BE A SECTION OF A # PROVIDES THE OPTION OF COMPUTING THE NEW UPDATED STATE VECTOR. THE RESULTING TRAJECTORY MAY BE A SECTION OF A
# CIRCLE, ELLIPSE, PARABOLA, OR HYPERBOLA WITH RESPECT TO THE EARTH OR THE MOON. THE USE OF THE SUBROUTINE CAN BE # CIRCLE, ELLIPSE, PARABOLA, OR HYPERBOLA WITH RESPECT TO THE EARTH OR THE MOON. THE USE OF THE SUBROUTINE CAN BE
# EXTENDED USING OTHER PRIMARY BODIES BY SIMPLE ADDITIONS TO THE MUTABLE WITHOUT INTRODUCING ANY CODING CHANGES, # EXTENDED USING OTHER PRIMARY BODIES BY SIMPLE ADDITIONS TO THE MUTABLE WITHOUT INTRODUCING ANY CODING CHANGES,
# ACCEPTING THE INHERENT SCALE FACTOR CHANGES IN POSITION AND VELOCITY. # ACCEPTING THE INHERENT SCALE FACTOR CHANGES IN POSITION AND VELOCITY.
@ -387,7 +387,7 @@
# STATE IS TO BE UPDATED ALONG A CONIC TRAJECTORY, CALCULATES THE CORRESPONDING TIME-OF-FLIGHT AND, IN ADDITION, # STATE IS TO BE UPDATED ALONG A CONIC TRAJECTORY, CALCULATES THE CORRESPONDING TIME-OF-FLIGHT AND, IN ADDITION,
# PROVIDES THE OPTION OF COMPUTING THE NEW UPDATED STATE VECTOR. THE RESULTING TRAJECTORY MAY BE A SECTION OF A # PROVIDES THE OPTION OF COMPUTING THE NEW UPDATED STATE VECTOR. THE RESULTING TRAJECTORY MAY BE A SECTION OF A
# CIRCLE, ELLIPSE, PARABOLA, OR HYPERBOLA WITH RESPECT TO THE EARTH OR THE MOON. THE USE OF THE SUBROUTINE CAN BE # CIRCLE, ELLIPSE, PARABOLA, OR HYPERBOLA WITH RESPECT TO THE EARTH OR THE MOON. THE USE OF THE SUBROUTINE CAN BE
# EXTENDED USING OTHER PRIMARY BODIES BY SIMMPE ADDITIONS TO THE MUTABLE WITHOUT INTRODUCING ANY CODING CHANGES, # EXTENDED USING OTHER PRIMARY BODIES BY SIMPLE ADDITIONS TO THE MUTABLE WITHOUT INTRODUCING ANY CODING CHANGES,
# ACCEPTING THE INHERENT SCALE FACTOR CHANGES IN POSITION AND VELOCITY. # ACCEPTING THE INHERENT SCALE FACTOR CHANGES IN POSITION AND VELOCITY.
# #
# IF THE DESIRED RADIUS IS BEYOND THE RADIUS OF APOCENTER OF THE CONIC OR BELOW THE RADIUS OF PERICENTER, # IF THE DESIRED RADIUS IS BEYOND THE RADIUS OF APOCENTER OF THE CONIC OR BELOW THE RADIUS OF PERICENTER,
@ -1825,7 +1825,7 @@ KEPC2 EQUALS 36D
# R2VEC ERASE +5 # R2VEC ERASE +5
# TDESIRED ERASE +1 # TDESIRED ERASE +1
# GEOMSGN ERASE +0 # GEOMSGN ERASE +0
# GUESSW # 0 IF COGA GUESS AVIABLE, 1 IF NOT # GUESSW # 0 IF COGA GUESS AVAILABLE, 1 IF NOT
# COGA ERASE +1 # INPUT ONLY IF GUESS IS ZERO. # COGA ERASE +1 # INPUT ONLY IF GUESS IS ZERO.
# NORMSW # 0 IF UN TO BE COMPUTED, 1 IF UN INPUT # NORMSW # 0 IF UN TO BE COMPUTED, 1 IF UN INPUT
# UN ERASE +5 # ONLY USED IF NORMSW IS 1 # UN ERASE +5 # ONLY USED IF NORMSW IS 1

View File

@ -35,7 +35,7 @@
# THIS ROUTINE TAKES THE SHAFT AND TRUNNION ANGLES AS READ BY THE CM OPTICAL SYSTEM AND CONVERTS THEM INTO A UNIT # THIS ROUTINE TAKES THE SHAFT AND TRUNNION ANGLES AS READ BY THE CM OPTICAL SYSTEM AND CONVERTS THEM INTO A UNIT
# VECTOR REFERENCED TO THE NAVIGATION BASE COORDINATE SYSTEM AND COINCIDENT WITH THE SEXTANT LINE OF SIGHT. # VECTOR REFERENCED TO THE NAVIGATION BASE COORDINATE SYSTEM AND COINCIDENT WITH THE SEXTANT LINE OF SIGHT.
# #
# THE INPUTS ARE: 1) THE SEXTAND SHAFT AND TRUNNION ANGLES ARE STORED SP IN LOCATIONS 3 AND 5 RESPECTIVELY OF THE # THE INPUTS ARE: 1) THE SEXTANT SHAFT AND TRUNNION ANGLES ARE STORED SP IN LOCATIONS 3 AND 5 RESPECTIVELY OF THE
# MARK VAC AREA. 2) THE COMPLEMENT OF THE BASE ADDRESS OF THE MARK VAC AREA IS STORED SP AT LOCATION X1 OF YOUR # MARK VAC AREA. 2) THE COMPLEMENT OF THE BASE ADDRESS OF THE MARK VAC AREA IS STORED SP AT LOCATION X1 OF YOUR
# JOB VAC AREA. # JOB VAC AREA.
# #
@ -83,7 +83,7 @@ SXTLOGIC CAF 10DEGS- # CORRECT FOR 19.775 DEGREE OFFSET
# ERENECED TO THE OPTICS COORDINATE SYSTEM. IN ADDITION IT SETS UP THREE UNIT VECTORS DEFINING THE X, Y, AND Z AXES # ERENECED TO THE OPTICS COORDINATE SYSTEM. IN ADDITION IT SETS UP THREE UNIT VECTORS DEFINING THE X, Y, AND Z AXES
# REFERENCED TO THE OPTICS COORDINATE SYSTEM. # REFERENCED TO THE OPTICS COORDINATE SYSTEM.
# #
# THE INPUTS ARE: 1) THE STAR VECTOR REFERRED TO THE PRESENT STABLE MEMMBER COORDINATES STORED AT STAR. 2) SAME ANGLE # THE INPUTS ARE: 1) THE STAR VECTOR REFERRED TO THE PRESENT STABLE MEMBER COORDINATES STORED AT STAR. 2) SAME ANGLE
# INPUT AS *SMNB*, I.E., SINES AND COSINES OF THE CDU ANGLES, IN THE ORDER Y Z X, AT SINCDU AND COSCDU. A CALL # INPUT AS *SMNB*, I.E., SINES AND COSINES OF THE CDU ANGLES, IN THE ORDER Y Z X, AT SINCDU AND COSCDU. A CALL
# TO CDUTRIG WILL PROVIDE THIS INPUT. # TO CDUTRIG WILL PROVIDE THIS INPUT.
# #
@ -111,7 +111,7 @@ CALCSXA ITA VLOAD # PUSHDOWN 00-26D, 28D, 30D, 32D-36D
# SIGHT LIES ALONG THE STAR VECTOR. # SIGHT LIES ALONG THE STAR VECTOR.
# #
# THE INPUTS ARE: 1) THE STAR VECTOR REFERRED TO ANY COORDINATE SYSTEM STORED AT STAR. 2) THE NAVIGATION BASE # THE INPUTS ARE: 1) THE STAR VECTOR REFERRED TO ANY COORDINATE SYSTEM STORED AT STAR. 2) THE NAVIGATION BASE
# COORDINATES REFERRED TO THE SAME COORDINATE SYSTEM. THESE THREE HALF-UNIT VECTORS ARE STROED AT XNB, YNB,AND # COORDINATES REFERRED TO THE SAME COORDINATE SYSTEM. THESE THREE HALF-UNIT VECTORS ARE STORED AT XNB, YNB,AND
# ZNB. # ZNB.
# #
# THE OUTPUTS ARE THE SEXTANT SHAFT AND TRUNNION ANGLES STORED DP AT SAC AND PAC RESPECTIVELY. (LOW ORDER PART # THE OUTPUTS ARE THE SEXTANT SHAFT AND TRUNNION ANGLES STORED DP AT SAC AND PAC RESPECTIVELY. (LOW ORDER PART

View File

@ -22,7 +22,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #
@ -79,12 +79,12 @@
# IS TO THE USER'S CALLING LOC +1. # IS TO THE USER'S CALLING LOC +1.
# 2. ALL ROUTINES NOT ENDING IN R DO NOT DO AN IMMEDIATE RETURN TO THE USER. # 2. ALL ROUTINES NOT ENDING IN R DO NOT DO AN IMMEDIATE RETURN TO THE USER.
# 3. ALL ROUTINES THAT END IN R START A SEPARATE JOB (MAKEPLAY) WITH USER'S JOB PRIORITY. # 3. ALL ROUTINES THAT END IN R START A SEPARATE JOB (MAKEPLAY) WITH USER'S JOB PRIORITY.
# 4. ALL ROUTIENS NOT ENDING IN R BRANCH DIRECTLY TO MAKEPLAY WHICH MAKES THESE DISPLAYS A PART OF THE # 4. ALL ROUTINES NOT ENDING IN R BRANCH DIRECTLY TO MAKEPLAY WHICH MAKES THESE DISPLAYS A PART OF THE
# USER'S JOB. # USER'S JOB.
# 5. ALL DISPLAY ROUTIENS ARE CALLED VIA BANKCALL. # 5. ALL DISPLAY ROUTINES ARE CALLED VIA BANKCALL.
# 6. TO RESTART A DISPLAY THE USER WILL GENERALLY USE A PHASE OF ONE WITH DESIRED RESTART GROUP (SEE # 6. TO RESTART A DISPLAY THE USER WILL GENERALLY USE A PHASE OF ONE WITH DESIRED RESTART GROUP (SEE
# DESCRIPTION OF RESTARTS). # DESCRIPTION OF RESTARTS).
# 7. ALL FLASHING DISPLAYS HAVE 3 RETURNS TO THE USER FROM ASTRONAUT RESPOSES. A TERMINATE (V34) BRANCHES # 7. ALL FLASHING DISPLAYS HAVE 3 RETURNS TO THE USER FROM ASTRONAUT RESPONSES. A TERMINATE (V34) BRANCHES
# TO THE USER'S CALL CADR +1. A PROCEED (V33) BRANCHES TO THE USER'S CALL CADR +2. AN ENTER OR RECYCLE # TO THE USER'S CALL CADR +1. A PROCEED (V33) BRANCHES TO THE USER'S CALL CADR +2. AN ENTER OR RECYCLE
# (V32) BRANCHES TO THE USER'S CALL CADR +3. # (V32) BRANCHES TO THE USER'S CALL CADR +3.
# 8. ALL ROUTINES MUST BE USED UNDER EXECUTIVE CONTROL # 8. ALL ROUTINES MUST BE USED UNDER EXECUTIVE CONTROL

View File

@ -22,7 +22,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -19,7 +19,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -19,7 +19,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -87,7 +87,7 @@
# PRIOR TO INVOCATION OF THE ROUTINE NOR DOES IT # PRIOR TO INVOCATION OF THE ROUTINE NOR DOES IT
# CONTAIN USEFUL OUTPUT TO ANOTHER ROUTINE. THUS # CONTAIN USEFUL OUTPUT TO ANOTHER ROUTINE. THUS
# Page 38 # Page 38
# IT MAY BE SHARED WITHANY OTHER ROUTINE WHICH # IT MAY BE SHARED WITH ANY OTHER ROUTINE WHICH
# IS NOT ACTIVE IN PARALLEL # IS NOT ACTIVE IN PARALLEL
# IN MEANS INPUT TO THE ROUTINE AND IT IS PROBABLY # IN MEANS INPUT TO THE ROUTINE AND IT IS PROBABLY
# TEMPORARY FOR A HIGHER-LEVEL ROUTINE/PROGRAM. # TEMPORARY FOR A HIGHER-LEVEL ROUTINE/PROGRAM.
@ -492,7 +492,7 @@ ERADFLAG = 017D # EARTH, COMPUTE EARTH, USED FIXED
ERADFBIT = BIT13 ERADFBIT = BIT13
# BIT 12 FLAG 1 # BIT 12 FLAG 1
NODOP01 = 018D # P01 NOT ALLOWED P01 ALLOWD NODOP01 = 018D # P01 NOT ALLOWED P01 ALLOWED
NOP01BIT = BIT12 NOP01BIT = BIT12
# BIT 11 FLAG 1 # BIT 11 FLAG 1
@ -546,8 +546,8 @@ TRM03FLG = 026D # REQUEST TO NO REQUEST TO
TRM03BIT = BIT4 TRM03BIT = BIT4
# BIT 3 FLAG 1 # BIT 3 FLAG 1
SLOPESW = 027D # ITERATE WITH BIAS ITERATE WITH REGULA SLOPESW = 027D # ITERATE WITH BIAS ITERATE WITH REGULAR
# METHOD IN ITERATOR FALSI METHOD IN # METHOD IN ITERATOR FALSE METHOD IN
# ITERATOR # ITERATOR
SLOPEBIT = BIT3 SLOPEBIT = BIT3
@ -1564,7 +1564,7 @@ DOTRET ERASE # RETURN FROM DOT SUBROUTINE
DVNORMCT EQUALS DOTRET # DIVIDENT NORMALIZATION COUNT IN DDV. DVNORMCT EQUALS DOTRET # DIVIDENT NORMALIZATION COUNT IN DDV.
ESCAPE2 EQUALS DOTRET # ALTERNATE ARCSIN/ARCCOS SWITCH ESCAPE2 EQUALS DOTRET # ALTERNATE ARCSIN/ARCCOS SWITCH
WDCNT EQUALS DOTRET # CHAR COUNTER FOR DSPWD WDCNT EQUALS DOTRET # CHAR COUNTER FOR DSPWD
INREL EQUALS DOTRET # INPUT BUFFER SELECTIOR ( X,Y,Z, REG ) INREL EQUALS DOTRET # INPUT BUFFER SELECTOR ( X,Y,Z, REG )
MATINC ERASE # VECTOR INCREMENT IN MXV AND VXM MATINC ERASE # VECTOR INCREMENT IN MXV AND VXM
MAXDVSW EQUALS MATINC # +0 IF DP QUOTIENT IS NEAR ONE -- ELSE -1. MAXDVSW EQUALS MATINC # +0 IF DP QUOTIENT IS NEAR ONE -- ELSE -1.
@ -2181,7 +2181,7 @@ TDELTAV EQUALS TET +2 # B(6)TMP POSITION DEVIATION KM*2(14)
TNUV EQUALS TDELTAV +6 # B(6)TMP VEL DEVIATION KM(-1/2)*2(14) TNUV EQUALS TDELTAV +6 # B(6)TMP VEL DEVIATION KM(-1/2)*2(14)
RCV EQUALS TNUV +6 # B(6)TMP CONIC POSITION KM*2(-14) RCV EQUALS TNUV +6 # B(6)TMP CONIC POSITION KM*2(-14)
VCV EQUALS RCV +6 # B(6)TMP CONIC VELOCITY KM(-1/2)*2(6) VCV EQUALS RCV +6 # B(6)TMP CONIC VELOCITY KM(-1/2)*2(6)
TC EQUALS VCV +6 # B(2)TMP TIME SINCE RECITIFICATION TC EQUALS VCV +6 # B(2)TMP TIME SINCE RECTIFICATION
XKEP EQUALS TC +2 # B(2)TMP ROOT OF KEPLER EQ KM(1/2)*2(-10) XKEP EQUALS TC +2 # B(2)TMP ROOT OF KEPLER EQ KM(1/2)*2(-10)
# **** TEMP -- IN VAC AREA **** # **** TEMP -- IN VAC AREA ****
@ -3541,7 +3541,7 @@ TNITPREV EQUALS TNIT +2 # I(2)
AXISCODE EQUALS TNITPREV +2 # I(1)IN AXISCODE EQUALS TNITPREV +2 # I(1)IN
# P30'S-P17 COMMON STORAGE. (24D) # P30'S-P17 COMMON STORAGE. (24D)
RACT3 EQUALS GRP2SVQ +1 # I(6)TMP POSITION OF ACTIE AT TPI TIME. RACT3 EQUALS GRP2SVQ +1 # I(6)TMP POSITION OF ACTIVE AT TPI TIME.
VACT3 EQUALS RACT3 +6 # I(6)TMP VELOCITY OF ACTIVE AT TPI TIME. VACT3 EQUALS RACT3 +6 # I(6)TMP VELOCITY OF ACTIVE AT TPI TIME.
RPASS3 EQUALS VACT3 +6 # I(6)TMP POSITION OF PASSIVE AT TPI TIME. RPASS3 EQUALS VACT3 +6 # I(6)TMP POSITION OF PASSIVE AT TPI TIME.
VPASS3 EQUALS RPASS3 +6 # I(6)TMP VELOCITY OF PASSIVE AT TPI TIME. VPASS3 EQUALS RPASS3 +6 # I(6)TMP VELOCITY OF PASSIVE AT TPI TIME.

View File

@ -448,7 +448,7 @@ EJ2 TS BUF +1
TC 2 TC 2
# Page 1220 # Page 1220
# IDLING AND COMPUTER ACTIVITY (GREEN) LIGHT MAINTENANCE. THE IDLING ROUTIEN IS NOT A JOB IN ITSELF, # IDLING AND COMPUTER ACTIVITY (GREEN) LIGHT MAINTENANCE. THE IDLING ROUTINE IS NOT A JOB IN ITSELF,
# BUT RATHER A SUBROUTINE OF THE EXECUTIVE. # BUT RATHER A SUBROUTINE OF THE EXECUTIVE.
EBANK= SELFRET # SELF-CHECK STORAGE IN EBANK. EBANK= SELFRET # SELF-CHECK STORAGE IN EBANK.

View File

@ -27,7 +27,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #
@ -76,7 +76,7 @@ LST2FAN TC VBZERO # VB40 ZERO (USED WITH NOUN 20 ONLY)
TC V62 # VB62 SELECT MODE II, ERROR WRT N22 TC V62 # VB62 SELECT MODE II, ERROR WRT N22
TC V63 # VB63 SELECT MODE III, ERROR WRT N17 TC V63 # VB63 SELECT MODE III, ERROR WRT N17
TC VB64 # VB64 CALCULATE, DISPLAY S-BAND ANT ANGLES TC VB64 # VB64 CALCULATE, DISPLAY S-BAND ANT ANGLES
TC CKOPTVB # V 65 E OPTICAL VERIFICATION FOR PRELAUNC TC CKOPTVB # V 65 E OPTICAL VERIFICATION FOR PRELAUNCH
TC ATTACHED # VB66 ATTACHED. MOVE THIS TO OTHER STATE TC ATTACHED # VB66 ATTACHED. MOVE THIS TO OTHER STATE
TC V67 # VB67 W MATRIX MONITOR TC V67 # VB67 W MATRIX MONITOR
TC STROKON # VB68 CSM STROKE TEST ON. TC STROKON # VB68 CSM STROKE TEST ON.

View File

@ -22,7 +22,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #
@ -932,7 +932,7 @@ DUMMYAD EXIT
# Page 200 # Page 200
TC BANKCALL TC BANKCALL
CADR UPACTOFF # TURN OFF UPLINK ACTIV LIGHT CADR UPACTOFF # TURN OFF UPLINK ACTIVE LIGHT
TC DOWNFLAG TC DOWNFLAG
ADRES VHFRFLAG ADRES VHFRFLAG
@ -1000,7 +1000,7 @@ RENDN00 CS MMNUMBER
EXTEND EXTEND
BZF KILL20 BZF KILL20
CA FLAGWRD0 # IS RENDZVOO FLAG SET CA FLAGWRD0 # IS RENDEZVOUS FLAG SET
MASK RNDVZBIT MASK RNDVZBIT
CCS A CCS A
TCF STATQUO TCF STATQUO
@ -1233,7 +1233,7 @@ RCSADDR4 2CADR RCSATT
3.1SEC OCT 37312 # 2.5 + 0.6 SEC 3.1SEC OCT 37312 # 2.5 + 0.6 SEC
# FOR VERB 37 TWO TABLES ARE MAINTAINED. EACH TABLE HAS AN ETRY FOR EACH # FOR VERB 37 TWO TABLES ARE MAINTAINED. EACH TABLE HAS AN ENTRY FOR EACH
# MAJOR MODE THAT CAN BE STARTED FROM THE KEYBOARD. THE ENTRIES ARE PUT # MAJOR MODE THAT CAN BE STARTED FROM THE KEYBOARD. THE ENTRIES ARE PUT
# INTO THE TABLE WITH THE ENTRY FOR THE HIGHEST MAJOR MODE COMING FIRST, # INTO THE TABLE WITH THE ENTRY FOR THE HIGHEST MAJOR MODE COMING FIRST,
# Page 206 # Page 206

View File

@ -18,7 +18,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -19,7 +19,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -21,7 +21,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #
@ -201,7 +201,7 @@ PIPJOBB INDEX NDXCTR
AINGOTN PDDL DDV AINGOTN PDDL DDV
DATAPL +4 DATAPL +4
SL4 DMPR SL4 DMPR
DEC585 # DEC585 HAS BEEN REDEVINED FOR LEM DEC585 # DEC585 HAS BEEN REDEFINED FOR LEM
RTB RTB
SGNAGREE SGNAGREE
STORE DSPTEM2 STORE DSPTEM2
@ -426,11 +426,11 @@ FINETIME INHINT # RETURNS WITH INTERRUPT INHIBITED
# #
# FUNCTIONAL DESCRIPTION # FUNCTIONAL DESCRIPTION
# #
# THIS SECTON CONSISTS OF PRELAUNCH ALIGNMENT AND GYRO DRIFT TESTS # THIS SECTION CONSISTS OF PRELAUNCH ALIGNMENT AND GYRO DRIFT TESTS
# INTEGRATED TOGETHER TO SAVE WORDS. COMPASS IS COMPLETELY RESTART # INTEGRATED TOGETHER TO SAVE WORDS. COMPASS IS COMPLETELY RESTART
# PROOFED EXCEPT FOR THE FIRST 30 SECONDS OR SO. PERFORMANCE TESTS OF # PROOFED EXCEPT FOR THE FIRST 30 SECONDS OR SO. PERFORMANCE TESTS OF
# THE IRIGS IS RESTART PROOFED ENOUGH TO GIVE 75 PERCENT CONFIDENCE THAT # THE IRIGS IS RESTART PROOFED ENOUGH TO GIVE 75 PERCENT CONFIDENCE THAT
# IF A RESTART OCCURS THE DATA WILL STILL BE GOOD. GOOD PRACTICE TO RECYCL # IF A RESTART OCCURS THE DATA WILL STILL BE GOOD. GOOD PRACTICE TO RECYCLE
# WHEN A RESTART OCCURS UNLESS IT HAPPENS NEAR THE END OF A TEST -- THEN WAIT # WHEN A RESTART OCCURS UNLESS IT HAPPENS NEAR THE END OF A TEST -- THEN WAIT
# FOR THE DATA TO FLASH. # FOR THE DATA TO FLASH.
# #
@ -457,7 +457,7 @@ FINETIME INHINT # RETURNS WITH INTERRUPT INHIBITED
# TO PERFORM AS PART OF COMPASS # TO PERFORM AS PART OF COMPASS
# #
# 1. OPTICAL VERIFICATION: V 65 E # 1. OPTICAL VERIFICATION: V 65 E
# 2. AXIMUTH CHANGE: V 78 E # 2. AZIMUTH CHANGE: V 78 E
# #
# SUBROUTINES CALLED # SUBROUTINES CALLED
# #

View File

@ -420,7 +420,7 @@ PIPFREE INHINT # PROGRAM DONE WITH PIPAS. DON'T LIGHT
# Page 1430 # Page 1430
# THE FOLLOWING ROUTINE TORQUES THE IRIGS ACCORDING TO DOUBLE PRECISION INPUTS IN THE SIX REGISTERS # THE FOLLOWING ROUTINE TORQUES THE IRIGS ACCORDING TO DOUBLE PRECISION INPUTS IN THE SIX REGISTERS
# BEGINNING AT THE ECADR ARRIVING IN A. THE MINIMUM SIZE OF ANY PULSE TRAIN IS 16 PULSES (.25 CDU COUNTS). THE # BEGINNING AT THE ECADR ARRIVING IN A. THE MINIMUM SIZE OF ANY PULSE TRAIN IS 16 PULSES (.25 CDU COUNTS). THE
# UNSENT PORTION OF THE COMMAND IS LEFT INTACT AT TEH INPUT COMMAND REGISTERS. # UNSENT PORTION OF THE COMMAND IS LEFT INTACT IN THE INPUT COMMAND REGISTERS.
EBANK= 1400 # VARIABLE, ACTUALLY. EBANK= 1400 # VARIABLE, ACTUALLY.

View File

@ -22,7 +22,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -78,7 +78,7 @@ DANZIG CA BANKSET # SET BBANK BEFORE TESTING NEWJOB SO THAT
NOIBNKSW CCS EDOP # SEE IF AN ORDER CODE IS LEFT OVER FROM NOIBNKSW CCS EDOP # SEE IF AN ORDER CODE IS LEFT OVER FROM
TCF OPJUMP # THE LAST PAIR RETRIEVED. IF SO, EXECUTE. TCF OPJUMP # THE LAST PAIR RETRIEVED. IF SO, EXECUTE.
# EDOP IS SET TO ZERO ON ITS RE-EDITIING. # EDOP IS SET TO ZERO ON ITS RE-EDITING.
CCS NEWJOB # SEE IF A JOB OF HIGHER PRIORITY IS CCS NEWJOB # SEE IF A JOB OF HIGHER PRIORITY IS
TCF CHANG2 # PRESENT, AND IF SO, CHANGE JOBS. TCF CHANG2 # PRESENT, AND IF SO, CHANGE JOBS.
@ -97,7 +97,7 @@ LOW7 OCT 177
MASK LOW7 # WHERE CCS EDOP WILL HONOR IT NEXT. MASK LOW7 # WHERE CCS EDOP WILL HONOR IT NEXT.
OPJUMP TS CYR # LOWWD ENTERS HERE IF A RIGHT-HAND OP OPJUMP TS CYR # LOWWD ENTERS HERE IF A RIGHT-HAND OP
CCS CYR # CODE IS TO BE PROCESSED. TEST PREFICES. CCS CYR # CODE IS TO BE PROCESSED. TEST PREFIXES.
TCF OPJUMP2 # TEST SECOND PREFIX BIT. TCF OPJUMP2 # TEST SECOND PREFIX BIT.
TCF EXIT # +0 OP CODE IS EXIT TCF EXIT # +0 OP CODE IS EXIT
@ -209,7 +209,7 @@ ITR13 INDEX CYR
# Page 1113 # Page 1113
# PUSH-UP ROUTINES. WHEN NO OPERAND ADDRESS IS GIVEN, THE APPROPRIATE OPERAND IS TAKEN FROM THE PUSH-DOWN # PUSH-UP ROUTINES. WHEN NO OPERAND ADDRESS IS GIVEN, THE APPROPRIATE OPERAND IS TAKEN FROM THE PUSH-DOWN
# LIST. IN MOST CASES THE MODE OF THE RESULT (VECTOR OR SCALAR) OF THE LAST ARTGHMETIC OPERATION PERFORMED # LIST. IN MOST CASES THE MODE OF THE RESULT (VECTOR OR SCALAR) OF THE LAST ARITHMETIC OPERATION PERFORMED
# IS THE SAME AS THE TYPE OF OPERAND DESIRED (ALL ADD/SUBTRACT ETC.). EXCEPTIONS TO THIS GENERAL RULE ARE LISTED # IS THE SAME AS THE TYPE OF OPERAND DESIRED (ALL ADD/SUBTRACT ETC.). EXCEPTIONS TO THIS GENERAL RULE ARE LISTED
# BELOW (NOTE THAT IN EVERY CASE THE MODE REGISTER IS LEFT INTACT): # BELOW (NOTE THAT IN EVERY CASE THE MODE REGISTER IS LEFT INTACT):
# #
@ -226,7 +226,7 @@ PUSHUP CAF OCT23 # IF THE LOW 5 BITS OF CYR ARE LESS THAN
MASK CYR # 20, THIS OP REQUIRES SPECIAL ATTENTION. MASK CYR # 20, THIS OP REQUIRES SPECIAL ATTENTION.
AD -OCT10 # (NO -0). AD -OCT10 # (NO -0).
CCS A CCS A
TCF REGUP # FOR ALL CODES GREATEER THAN OCT 7. TCF REGUP # FOR ALL CODES GREATER THAN OCT 7.
-OCT10 OCT -10 -OCT10 OCT -10
@ -404,7 +404,7 @@ ITR1 INDEX LOC # THE STORECODE WAS STORED COMPLEMENTED TO
AD NEGONE # (YUL CAN'T REMOVE 1 BECAUSE OF EARLY CCS) AD NEGONE # (YUL CAN'T REMOVE 1 BECAUSE OF EARLY CCS)
DOSTORE TS ADDRWD DOSTORE TS ADDRWD
MASK LOW11 # ENTRY FROM DISPATCHER. SAVE THE ARASABLE MASK LOW11 # ENTRY FROM DISPATCHER. SAVE THE ERASABLE
XCH ADDRWD # ADDRESS AND JUMP ON THE STORE CODE NO. XCH ADDRWD # ADDRESS AND JUMP ON THE STORE CODE NO.
MASK B12T14 MASK B12T14
EXTEND EXTEND
@ -518,7 +518,7 @@ TLOAD INDEX ADDRWD
DCA 0 DCA 0
DXCH MPAC DXCH MPAC
TMODE CAF ONE TMODE CAF ONE
TCF NEWMODE # DECLEARE TRIPLE PRECISION MODE. TCF NEWMODE # DECLARE TRIPLE PRECISION MODE.
SLOAD ZL # LOAD A SINGLE PRECISION NUMBER INTO SLOAD ZL # LOAD A SINGLE PRECISION NUMBER INTO
INDEX ADDRWD # MPAC, SETTING MPAC+1,2 TO ZERO. THE INDEX ADDRWD # MPAC, SETTING MPAC+1,2 TO ZERO. THE
@ -1047,7 +1047,7 @@ POLYCOM CAF LVBUF # INCOMING X WILL BE MOVED TO VBUF, SO
DXCH VBUF # SAVING X IN VBUF DXCH VBUF # SAVING X IN VBUF
TCF POLY2 TCF POLY2
POLYLOOP TS POLYCNT # SAVE DECREMENTD LOOP COUNTER POLYLOOP TS POLYCNT # SAVE DECREMENTED LOOP COUNTER
CS TWO CS TWO
ADS POLISH # REGRESS COEFFICIENT POINTER ADS POLISH # REGRESS COEFFICIENT POINTER
@ -1337,7 +1337,7 @@ UPPOS XCH L # SAVE DECREMENTED UPPER PART.
TS A # SKIPS ON OVERFLOW TS A # SKIPS ON OVERFLOW
TCF +2 TCF +2
INCR L # RESTORE UPPER TO ORIGINAL VALUE INCR L # RESTORE UPPER TO ORIGINAL VALUE
XCH L # SWAP A + L BANCK. XCH L # SWAP A + L BANK.
TC Q TC Q
UPNEG XCH L # SAVE COMPLEMENTED + DECREMENTED UPPER PT UPNEG XCH L # SAVE COMPLEMENTED + DECREMENTED UPPER PT
@ -1361,7 +1361,7 @@ DMPR TC DMPSUB
TCF DANZIG TCF DANZIG
DDV EXTEND DDV EXTEND
INDEX ADDRWD # MOVE DIVIDENT INTO BUF. INDEX ADDRWD # MOVE DIVIDEND INTO BUF.
DCA 0 DCA 0
TCF BDDV +4 TCF BDDV +4
@ -1787,7 +1787,7 @@ GENSCL CS ADDRWD # PUT ROUNDING BIT (BIT 10 OF ADDRWD) INTO
DDV/BDDV CS ONE # INITIALIZATION DDV/BDDV CS ONE # INITIALIZATION
TS DVSIGN # +-1 FOR POSITIVE QUOTIENT -- -0 FOR NEG. TS DVSIGN # +-1 FOR POSITIVE QUOTIENT -- -0 FOR NEG.
TS DVNORMCT # DIVIDENT NORMALIZATION COUNT. TS DVNORMCT # DIVIDEND NORMALIZATION COUNT.
TS MAXDVSW # NEAR-ONE DIVIDE FLAG. TS MAXDVSW # NEAR-ONE DIVIDE FLAG.
CCS BUF # FORCE BUF POSITIVE WITH THE MAJOR PART CCS BUF # FORCE BUF POSITIVE WITH THE MAJOR PART
@ -1803,7 +1803,7 @@ BUFZERO TS MPAC +2 # ZERO THIS.
TCF +2 TCF +2
TCF OVF+ -1 # MAJOR PART OF DIVIDEND IS NEG. NON-ZERO TCF OVF+ -1 # MAJOR PART OF DIVIDEND IS NEG. NON-ZERO
XCH BUF +1 # SHIFT DIVIDENT AND DIVISOR LEFT 14 XCH BUF +1 # SHIFT DIVIDEND AND DIVISOR LEFT 14
XCH BUF XCH BUF
XCH MPAC +1 XCH MPAC +1
XCH MPAC XCH MPAC
@ -1819,7 +1819,7 @@ SGNDVOVF EXTEND
DVOVF CAF POSMAX # ON DIVISION OVERFLOW OF ANY SORT, SET DVOVF CAF POSMAX # ON DIVISION OVERFLOW OF ANY SORT, SET
TS MPAC # SET DP MPAC TO +-POSMAX. TS MPAC # SET DP MPAC TO +-POSMAX.
TC FINALDV +3 TC FINALDV +3
CAF ONE # SET OVEFLOW INDICATOR AND EXIT. CAF ONE # SET OVERFLOW INDICATOR AND EXIT.
TS OVFIND TS OVFIND
TC DANZIG TC DANZIG
@ -1943,7 +1943,7 @@ BUFNEG CCS A
DDOUBL # PROLOGUE WHICH NORMALIZES THE DIVIDEND DDOUBL # PROLOGUE WHICH NORMALIZES THE DIVIDEND
DDOUBL # WHEN IT IS KNOWN THAT NO DIVISION DDOUBL # WHEN IT IS KNOWN THAT NO DIVISION
DDOUBL # OVEFLOW WILL OCCUR. DDOUBL # OVERFLOW WILL OCCUR.
DDOUBL DDOUBL
DDOUBL DDOUBL
DDOUBL DDOUBL
@ -1959,7 +1959,7 @@ BUFNEG CCS A
MAXTEST CCS MAXDVSW # 0 IF MAJORS MIGHT BE =, -1 OTHERWISE. MAXTEST CCS MAXDVSW # 0 IF MAJORS MIGHT BE =, -1 OTHERWISE.
BIASHI DEC .4192 B-1 # SQRT CONSTANTS. BIASHI DEC .4192 B-1 # SQRT CONSTANTS.
TCF MAXDV # CHECK TO SEE IF THAY ARE NOW EQUAL. TCF MAXDV # CHECK TO SEE IF THEY ARE NOW EQUAL.
# Page 1167 # Page 1167
# THE FOLLOWING IS A GENERAL PURPOSE DOUBLE PRECISION DIVISION ROUTINE. IT DIVIDES MPAC BY BUF AND LEAVES # THE FOLLOWING IS A GENERAL PURPOSE DOUBLE PRECISION DIVISION ROUTINE. IT DIVIDES MPAC BY BUF AND LEAVES
@ -2287,7 +2287,7 @@ LARGE2 INDEX FIXLOC
# Page 1178 # Page 1178
# IF THE LENGTH OF THE ARGUMENT VECTOR WAS LESS THAN 2(-28), EACH COMPONENT MUST BE SHIFTED LEFT AT LEAST # IF THE LENGTH OF THE ARGUMENT VECTOR WAS LESS THAN 2(-28), EACH COMPONENT MUST BE SHIFTED LEFT AT LEAST
# 14 PLACES BEFORE TEH DIVIDE, NOTE THAT IN THIS CASE, THE MAJOR PART OF EACH COMPONENT IS ZERO. # 14 PLACES BEFORE THE DIVIDE, NOTE THAT IN THIS CASE, THE MAJOR PART OF EACH COMPONENT IS ZERO.
SMALL TS MPTEMP # NEGATIVE OF PRE-DIVIDE SHIFT COUNT. SMALL TS MPTEMP # NEGATIVE OF PRE-DIVIDE SHIFT COUNT.

View File

@ -19,7 +19,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -18,7 +18,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -22,7 +22,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -21,7 +21,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -362,7 +362,7 @@ FAZC CALL
GRP2PC GRP2PC
# Page 1259 # Page 1259
VLOAD VAD # START 3RD PHASE OF INCORP2 VLOAD VAD # START 3RD PHASE OF INCORP2
X789 # 7TH, 8TH, 9TH COMPONENTN OF STATE VECTOR X789 # 7TH, 8TH, 9TH COMPONENTS OF STATE VECTOR
DELTAX +12D # INCORPORATION FOR X789 DELTAX +12D # INCORPORATION FOR X789
STORE TX789 STORE TX789
BON RTB BON RTB

View File

@ -227,7 +227,7 @@ GAMCOMP VLOAD VSR1
# Page 1339 # Page 1339
36D 36D
STORE BETAM STORE BETAM
NORM BDDV # FORM NORMALIZE QUOTIEN ALPHAM/BETAM NORM BDDV # FORM NORMALIZE QUOTIENT ALPHAM/BETAM
33D 33D
SR1R PUSH # C(PDL+2) = ALMOST NORMALIZE RHO. SR1R PUSH # C(PDL+2) = ALMOST NORMALIZE RHO.
DLOAD* DLOAD*

View File

@ -724,7 +724,7 @@ DECRM61 TS R61CNTR
# #
# USTAR, MODIFIED FICTITIOUS STAR DIRECTION (1/2 UNIT VECTOR) # USTAR, MODIFIED FICTITIOUS STAR DIRECTION (1/2 UNIT VECTOR)
# #
# BVECTOR = 9 DIMENTIONAL BVECTOR (1/2 UNIT VEC.) # BVECTOR = 9 DIMENSIONAL BVECTOR (1/2 UNIT VEC.)
# #
# DELTAQ = MEASURED DEVIATION # DELTAQ = MEASURED DEVIATION
# #
@ -2706,7 +2706,7 @@ DP1MIN 2DEC 6000
V89CALL TC BANKCALL # IMU STATUS CHECK. RETURNS IF ORIENTATION V89CALL TC BANKCALL # IMU STATUS CHECK. RETURNS IF ORIENTATION
CADR R02BOTH # KNOWN. ALARMS IF NOT. CADR R02BOTH # KNOWN. ALARMS IF NOT.
CAF THREE # ALLOW ASTRONAUT TO SELECT DESURED CAF THREE # ALLOW ASTRONAUT TO SELECT DESIRED
TS OPTION1 # TRACKING ATTITUDE AXIS TS OPTION1 # TRACKING ATTITUDE AXIS
CAF ONE CAF ONE
TS OPTION1 +1 TS OPTION1 +1

View File

@ -207,7 +207,7 @@ V16N35 VN 1635
V06N45 VN 0645 V06N45 VN 0645
# Page 639 # Page 639
# PROGRAM DESCRPTION S30.1 DATE 9NOV66 # PROGRAM DESCRIPTION S30.1 DATE 9NOV66
# MOD NO 1 LOG SECTION P30,P37 # MOD NO 1 LOG SECTION P30,P37
# MOD BY RAMA AIYAWAR ** # MOD BY RAMA AIYAWAR **
# MOD.2 BY S.ZELDIN -- TO CORRECT MOD.1 FOR COLOSSUS 29DEC67 # MOD.2 BY S.ZELDIN -- TO CORRECT MOD.1 FOR COLOSSUS 29DEC67

View File

@ -50,12 +50,12 @@
# APPROVED AND KEYED INTO THE DSKY BY THE ASTRONAUT. # APPROVED AND KEYED INTO THE DSKY BY THE ASTRONAUT.
# (3) TO DISPLAY TO THE ASTRONAUT AND THE GROUND DEPENDENT VARIABLES # (3) TO DISPLAY TO THE ASTRONAUT AND THE GROUND DEPENDENT VARIABLES
# ASSOCIATED WITH THE CONCENTRIC FLIGHT PLAN MANEUVERS FOR # ASSOCIATED WITH THE CONCENTRIC FLIGHT PLAN MANEUVERS FOR
# APPROVAL BY THE ASTRRONAUT/GROUND. # APPROVAL BY THE ASTRONAUT/GROUND.
# (4) TO STORE THE CSI TARGET PARAMETERS FOR USE BY THE DESIRED # (4) TO STORE THE CSI TARGET PARAMETERS FOR USE BY THE DESIRED
# THRUSTING PROGRAM. # THRUSTING PROGRAM.
# #
# ASSUMPTIONS # ASSUMPTIONS
# (1) AT A SELECTED TPI TIME THE LINE OF SIGNT BETWEEN THE ACTIVE # (1) AT A SELECTED TPI TIME THE LINE OF SIGHT BETWEEN THE ACTIVE
# AND PASSIVE VEHICLES IS SELECTED TO BE A PRESCRIBED ANGLE (E) # AND PASSIVE VEHICLES IS SELECTED TO BE A PRESCRIBED ANGLE (E)
# FROM THE HORIZONTAL PLANE DEFINED BY THE ACTIVE VEHICLE # FROM THE HORIZONTAL PLANE DEFINED BY THE ACTIVE VEHICLE
# POSITION. # POSITION.

View File

@ -20,7 +20,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #
@ -38,7 +38,7 @@
# PURPOSE # PURPOSE
# (1) TO CALCULATE THE REQUIRED DELTA V AND OTHER INITIAL CONDITIONS # (1) TO CALCULATE THE REQUIRED DELTA V AND OTHER INITIAL CONDITIONS
# REQUIRED BY THE ACTIVE VEHICLE FOR EXECUTION OF THE TRANSFER # REQUIRED BY THE ACTIVE VEHICLE FOR EXECUTION OF THE TRANSFER
# PHASE INITITATION (TPI) MANEUVER, GIVEN -- # PHASE INITIATION (TPI) MANEUVER, GIVEN --
# (A) TIME OF IGNITION TIG (TPI) OR THE ELEVATION ANGLE (E) OF # (A) TIME OF IGNITION TIG (TPI) OR THE ELEVATION ANGLE (E) OF
# THE ACTIVE/PASSIVE VEHICLE LOS AT TIG (TPI). # THE ACTIVE/PASSIVE VEHICLE LOS AT TIG (TPI).
# (B) CENTRAL ANGLE OF TRANSFER (CENTANG) FROM TIG (TPI) TO # (B) CENTRAL ANGLE OF TRANSFER (CENTANG) FROM TIG (TPI) TO
@ -759,7 +759,7 @@ NOVRWRT VLOAD PUSH
# Page 478 # Page 478
# ***** S34/35.4 ***** # ***** S34/35.4 *****
S34/35.4 STQ SETPD NO ASTRONAUT OVERWRITE S34/35.4 STQ SETPD # NO ASTRONAUT OVERWRITE
NORMEX NORMEX
0D 0D
GOTO GOTO
@ -1023,14 +1023,14 @@ EPSFOUR 2DEC .0416666666
# #
# IN ORDER TO AVOID THE INHERENT SINGULARITIES IN THE 180 DEGREE # IN ORDER TO AVOID THE INHERENT SINGULARITIES IN THE 180 DEGREE
# TRANSFER CASE WHEN THE (TRUE OR OFFSET) TARGET VECTOR MAY BE # TRANSFER CASE WHEN THE (TRUE OR OFFSET) TARGET VECTOR MAY BE
# SLIGHTLYOUT OF THE ORBITAL PLANE, THIS SUBROUTINE ROTATES THIS # SLIGHTLY OUT OF THE ORBITAL PLANE, THIS SUBROUTINE ROTATES THIS
# VECTOR INTO A PLANE DEFINED BY THE INPUT INITIAL POSITION VECTOR # VECTOR INTO A PLANE DEFINED BY THE INPUT INITIAL POSITION VECTOR
# AND ANOTHER INPUT VECTOR (USUALLY THE INITIAL VELOCITY VECTOR), # AND ANOTHER INPUT VECTOR (USUALLY THE INITIAL VELOCITY VECTOR),
# WHENEVER THE INPUT TARGET VECTOR LIES INSIDE A CONE WHOSE VERTEX # WHENEVER THE INPUT TARGET VECTOR LIES INSIDE A CONE WHOSE VERTEX
# IS THE ORIGIN OF COORDINATES, WHOSE AXIS IS THE 180 DEGREE # IS THE ORIGIN OF COORDINATES, WHOSE AXIS IS THE 180 DEGREE
# TRANSFER DIRECTION, AND WHOSE CONE ANGLE IS SPECIFIED BY THE USER. # TRANSFER DIRECTION, AND WHOSE CONE ANGLE IS SPECIFIED BY THE USER.
# #
# THE LAMBERT SUBROUTINE IS UTILIZED FOR THE CONIC COMUTATIONS AND # THE LAMBERT SUBROUTINE IS UTILIZED FOR THE CONIC COMPUTATIONS AND
# THE COASTING INTEGRATION SUBROUTINE IS UTILIZED FOR THE PRECISION # THE COASTING INTEGRATION SUBROUTINE IS UTILIZED FOR THE PRECISION
# TRAJECTORY COMPUTATIONS. # TRAJECTORY COMPUTATIONS.
# #

View File

@ -802,7 +802,7 @@ SURELY.9 EXIT
RN # ACTIVE VEHICLE RADIUS VECTOR AT T1 RN # ACTIVE VEHICLE RADIUS VECTOR AT T1
STOVL RINIT STOVL RINIT
# Page 701 # Page 701
VN # ACTIVE VEHICLE VELOCITY VECTORY AT T1 VN # ACTIVE VEHICLE VELOCITY VECTOR AT T1
STODL VINIT STODL VINIT
PIPTIME PIPTIME
STORE TNIT STORE TNIT

View File

@ -28,7 +28,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #
@ -742,7 +742,7 @@ CSSUN 2DEC .24148 # (COS 15)/4
# FUNCTION # FUNCTION
# THIS PROGRAM READS THE IMU-CDUS AND COMPUTES THE VEHICLE ORIENTATION # THIS PROGRAM READS THE IMU-CDUS AND COMPUTES THE VEHICLE ORIENTATION
# WITH RESPECT TO INERTIAL SPACE. IT THEN COMPUTES THE SHAFT AXIS (SAX) # WITH RESPECT TO INERTIAL SPACE. IT THEN COMPUTES THE SHAFT AXIS (SAX)
# WITH RESPECT TO REFERENCE INTERTIAL. EACH STAR IN THE CATALOG IS TESTED # WITH RESPECT TO REFERENCE INERTIAL. EACH STAR IN THE CATALOG IS TESTED
# TO DETERMINE IF IT IS OCCULTED BY EITHER EARTH, SUN OR MOON. IF A # TO DETERMINE IF IT IS OCCULTED BY EITHER EARTH, SUN OR MOON. IF A
# STAR IS NOT OCCULTED THEN IT IS PAIRED WITH ALL STARS OF LOWER INDEX. # STAR IS NOT OCCULTED THEN IT IS PAIRED WITH ALL STARS OF LOWER INDEX.
# THE PAIRED STAR IS TESTED FOR OCCULTATION. PAIRS OF STARS THAT PASS # THE PAIRED STAR IS TESTED FOR OCCULTATION. PAIRS OF STARS THAT PASS

View File

@ -23,7 +23,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -136,7 +136,7 @@
# THE FOLLOWING ARE OF GENERAL INTEREST -- # THE FOLLOWING ARE OF GENERAL INTEREST --
# #
# REMARKS CARDS PRECEDE THE REFERENCED SYMBOL DEFINITION. SEE SYMBOL # REMARKS CARDS PRECEDE THE REFERENCED SYMBOL DEFINITION. SEE SYMBOL
# TABLE TO FIND APPROPRIATE PACE NUMBERS. # TABLE TO FIND APPROPRIATE PAGE NUMBERS.
# #
# NVSUB CALLING POINT FOR INTERNAL USE OF PINBALL. # NVSUB CALLING POINT FOR INTERNAL USE OF PINBALL.
# OF RELATED INTEREST NVSBWAIT # OF RELATED INTEREST NVSBWAIT
@ -1656,7 +1656,7 @@ SEPMIN XCH Q # FIND WHOLE MINUTES IN BIT13
ADRES MINCON1 # GIVES FRACT MIN/60 IN MPAC+1. ADRES MINCON1 # GIVES FRACT MIN/60 IN MPAC+1.
ENDSPMIN TC SEPMNRET # GIVES WHOLE HOURS IN MPAC. ENDSPMIN TC SEPMNRET # GIVES WHOLE HOURS IN MPAC.
# THIS IS A SPECIAL PURPOS VERB FOR DISPLAYING A DOUBLE PRECISION AGC # THIS IS A SPECIAL PURPOSE VERB FOR DISPLAYING A DOUBLE PRECISION AGC
# WORD AS 10 DECIMAL DIGITS ON THE AGC DISPLAY PANEL. IT CAN BE USED WITH # WORD AS 10 DECIMAL DIGITS ON THE AGC DISPLAY PANEL. IT CAN BE USED WITH
# ANY NOUN, EXCEPT MIXED NOUNS. IT DISPLAYS THE CONTENTS # ANY NOUN, EXCEPT MIXED NOUNS. IT DISPLAYS THE CONTENTS
# OF THE REGISTER NOUNADD IS POINTING TO. IF USED WITH NOUNS WHICH ARE # OF THE REGISTER NOUNADD IS POINTING TO. IF USED WITH NOUNS WHICH ARE
@ -2967,7 +2967,7 @@ ENDRELDS EQUALS
# NVMONOPT IS AN ENTRY SIMILAR TO NVSUB, BUT REQUIRING AN ADDITIONAL # NVMONOPT IS AN ENTRY SIMILAR TO NVSUB, BUT REQUIRING AN ADDITIONAL
# Page 370 # Page 370
# PARAMETER IN L. IT SHOULD BE USED ONLY WITH A MONITOR VERB-NOUN CODE IN # PARAMETER IN L. IT SHOULD BE USED ONLY WITH A MONITOR VERB-NOUN CODE IN
# A. AFTER EACH MONITOR DISPLAY A *PLEASE* VERB WILL BE PASED INT THE VERB # A. AFTER EACH MONITOR DISPLAY A *PLEASE* VERB WILL BE PASSED INT THE VERB
# LIGHTS OR DATA WILL BE BLANKED (OR BOTH) ACCORDING TO THE OPTIONS # LIGHTS OR DATA WILL BE BLANKED (OR BOTH) ACCORDING TO THE OPTIONS
# SPECIFIED IN L. IF BITS 8-14 OF L ARE OTHER THAN ZERO, THEN THEY WILL # SPECIFIED IN L. IF BITS 8-14 OF L ARE OTHER THAN ZERO, THEN THEY WILL
# BE INTERPRETED AS A VERB CODE AND PASTED IN THE VERB LIGHTS. (THIS VERB # BE INTERPRETED AS A VERB CODE AND PASTED IN THE VERB LIGHTS. (THIS VERB

View File

@ -20,7 +20,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -259,7 +259,7 @@ DOTICK CAF 1SEC # RE-REQUEST TICKTEST.
MASK V82FLAGS MASK V82FLAGS
INDEX A INDEX A
TC +1 TC +1
TC TASKOVER # IF NO FLAGBITS SET DONT' CHANGE TFF OR TC TASKOVER # IF NO FLAGBITS SET DON'T CHANGE TFF OR
# -TPER, BUT CONTINUE LOOP. # -TPER, BUT CONTINUE LOOP.
TC TPERTICK # ONLY BIT 1 SET. INCR -TPER BY 1 SEC. TC TPERTICK # ONLY BIT 1 SET. INCR -TPER BY 1 SEC.
TFFTICK CAF 1SEC # ONLY BIT 2 SET. INCR TFF BY 1 SEC. TFFTICK CAF 1SEC # ONLY BIT 2 SET. INCR TFF BY 1 SEC.
@ -281,7 +281,7 @@ V82GON EXIT # AVERAGE G ON. USE CURRENT STATE VECTOR
2CADR V82GON1 2CADR V82GON1
RELINT RELINT
CCS NEWJOB # WITHOLD V16 N44 UNTIL FIRST ORBIT CALC CCS NEWJOB # WITHHOLD V16 N44 UNTIL FIRST ORBIT CALC
TC CHANG1 # IS DONE. NOTE: V82GON1 (PRIO7, FINDVAC TC CHANG1 # IS DONE. NOTE: V82GON1 (PRIO7, FINDVAC
# JOB) IS COMPLETED BEFORE V82GON (PRIO7, # JOB) IS COMPLETED BEFORE V82GON (PRIO7,
# NOVAC JOB). # NOVAC JOB).
@ -340,7 +340,7 @@ SPLRET EXIT
EXTEND EXTEND
BZF SPLRET1 BZF SPLRET1
V82GON3 CAF BIT5 V82GON3 CAF BIT5
MASK EXTVBACT # SEE IF ASTRONAUT HAS SIGNALLED TERMINATE MASK EXTVBACT # SEE IF ASTRONAUT HAS SIGNALED TERMINATE
EXTEND EXTEND
BZF ENDEXT # YES, TERMINATE VB 82 LOOP BZF ENDEXT # YES, TERMINATE VB 82 LOOP
CAF 1SEC CAF 1SEC

View File

@ -19,7 +19,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -397,7 +397,7 @@ KRESUME1 TCF RESUME # END PHASE 1
# MASK BIT3 # MASK BIT3
# ADS RCSFLAGS # ADS RCSFLAGS
# #
# THEREAFTER, THE ATTITUDE ERRORS GENERATED BY THE USER SHOULD BE TRANFERRED TO THE FOLLOWING LOCATIONS IN EBANK6: # THEREAFTER, THE ATTITUDE ERRORS GENERATED BY THE USER SHOULD BE TRANSFERRED TO THE FOLLOWING LOCATIONS IN EBANK6:
# #
# AK SCALED 180 DEGREES NOTE: THESE LOCATIONS ARE SUBJECT # AK SCALED 180 DEGREES NOTE: THESE LOCATIONS ARE SUBJECT
# AK1 SCALED 180 DEGREES TO CHANGE # AK1 SCALED 180 DEGREES TO CHANGE

View File

@ -22,7 +22,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -22,7 +22,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -20,7 +20,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #
@ -162,7 +162,7 @@ INCRCDUS CAF LOCTHETA
LOCTHETA ADRES THETAD LOCTHETA ADRES THETAD
# THE FOLLOWING ROUTINE INCREMENTS IN 2'S COMPLEMENT THE REGISTER WHOSE ADDRESS IS IN BUF BY THE 1'S COMPL. # THE FOLLOWING ROUTINE INCREMENTS IN 2'S COMPLEMENT THE REGISTER WHOSE ADDRESS IS IN BUF BY THE 1'S COMPL.
# QUANTITY FOUND IN TEM2. THIS MAY BE USED TO INCRMENT DESIRED IMU AND OPTICS CDU ANGLES OR ANY OTHER 2'S COMPL. # QUANTITY FOUND IN TEM2. THIS MAY BE USED TO INCREMENT DESIRED IMU AND OPTICS CDU ANGLES OR ANY OTHER 2'S COMPL.
# (+0 UNEQUAL TO -0) QUANTITY. MAY BE CALLED BY BANKCALL/SWCALL. # (+0 UNEQUAL TO -0) QUANTITY. MAY BE CALLED BY BANKCALL/SWCALL.
CDUINC TS TEM2 # 1'S COMPL. QUANT. ARRIVES IN ACC. STORE IT CDUINC TS TEM2 # 1'S COMPL. QUANT. ARRIVES IN ACC. STORE IT
@ -264,9 +264,9 @@ DPMODE CAF ZERO # SETS MPAC +2 TO ZERO IN THE PROCESS
TCF SLOAD2 TCF SLOAD2
# RTB OP CODE NORMUNIT IS LIKE INTERPRETIVE INSTRUCTION UNIT, EXCEPT THAT IT CAN BE DEPENDED ON NOT TO BLOW # RTB OP CODE NORMUNIT IS LIKE INTERPRETIVE INSTRUCTION UNIT, EXCEPT THAT IT CAN BE DEPENDED ON NOT TO BLOW
# UP WHEN THE VECTOR BEING UNITIZED IS VERY SAMLL -- IT WILL BLOW UP WHEN ALL COMPONENT ARE ZERO. IF NORMUNIT # UP WHEN THE VECTOR BEING UNITIZED IS VERY SMALL -- IT WILL BLOW UP WHEN ALL COMPONENT ARE ZERO. IF NORMUNIT
# IS USED AND THE UPPER ORDER HALVES OF ALL COMPONENTS ARE ZERO, THE MAGNITUDE RETURNS IN 36D WILL BE TOO LARGE # IS USED AND THE UPPER ORDER HALVES OF ALL COMPONENTS ARE ZERO, THE MAGNITUDE RETURNS IN 36D WILL BE TOO LARGE
# BY A FACTOR OF 2(13) AND THE SQURED MAGNITUDE RETURNED AT 34D WILL BE TOO BIG BY A FACTOR OF 2(26). # BY A FACTOR OF 2(13) AND THE SQUARED MAGNITUDE RETURNED AT 34D WILL BE TOO BIG BY A FACTOR OF 2(26).
NORMUNX1 CAF ONE NORMUNX1 CAF ONE
TCF NORMUNIT +1 TCF NORMUNIT +1

View File

@ -19,7 +19,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #
@ -617,7 +617,7 @@ NORMLIZE CAF THIRTEEN # SET UP TO COPY 14 REGS: RN1,VN1,PIPTIME1
PIPASR EXTEND PIPASR EXTEND
DCA TIME2 DCA TIME2
DXCH PIPTIME1 # CURRENT TIME POSITIVE VALUE DXCH PIPTIME1 # CURRENT TIME POSITIVE VALUE
CS ZERO # INITIALIZAE THESE AT NEG ZERO. CS ZERO # INITIALIZE THESE AT NEG ZERO.
TS TEMX TS TEMX
TS TEMY TS TEMY
TS TEMZ TS TEMZ

View File

@ -22,7 +22,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -19,7 +19,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -18,7 +18,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -19,7 +19,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #
@ -244,7 +244,7 @@ QUIKOFF EXTEND
# PROGRAM NAME: IMUMON # PROGRAM NAME: IMUMON
# #
# FUNCTIONAL DESCRIPTION: THIS PROGRAM IS ENTERED EVERY 480 MS. IT DETECTS CHANGES OF THE IMU STATUS BITS IN # FUNCTIONAL DESCRIPTION: THIS PROGRAM IS ENTERED EVERY 480 MS. IT DETECTS CHANGES OF THE IMU STATUS BITS IN
# CHANNEL 30 AND CALLS THE APPROPRIATE SUBROUTINES. THE BITS PROCESSED AND THEIR RELEVANT SUROUTINES ARE: # CHANNEL 30 AND CALLS THE APPROPRIATE SUBROUTINES. THE BITS PROCESSED AND THEIR RELEVANT SUBROUTINES ARE:
# #
# FUNCTION BIT SUBROUTINE CALLED # FUNCTION BIT SUBROUTINE CALLED
# -------- --- ----------------- # -------- --- -----------------
@ -1240,7 +1240,7 @@ ENDZOPT TC ZEROPCDU # ZERO OCDU COUNTERS
ZEROPCDU CAF ZERO ZEROPCDU CAF ZERO
TS CDUS # ZERO IN CDUS, -20 IN CDUT TS CDUS # ZERO IN CDUS, -20 IN CDUT
TS ZONE # INITIALZE SHAFT MONITOR ZONE. TS ZONE # INITIALIZE SHAFT MONITOR ZONE.
CS 20DEGS CS 20DEGS
TS CDUT TS CDUT
TC Q TC Q

View File

@ -139,7 +139,7 @@ TFFTEM = 36D # TEMPORARY
# TFFNP E:(-38+2NR) M LCP, SEMI LATUS RECTUM, WEIGHTED BY NR. FOR VGAMCALC. # TFFNP E:(-38+2NR) M LCP, SEMI LATUS RECTUM, WEIGHTED BY NR. FOR VGAMCALC.
# M:(-36+2NR) # M:(-36+2NR)
# TFF/RTMU E:(17) M:(14) 1/SQRT(MU) # TFF/RTMU E:(17) M:(14) 1/SQRT(MU)
# TFFVSQ E:(20) M:(18) 1/M -(V SQ/MU): PRESENT VELOCITY, NORMLIZED. FOR VGAMCALC # TFFVSQ E:(20) M:(18) 1/M -(V SQ/MU): PRESENT VELOCITY, NORMALIZED. FOR VGAMCALC
# TFFALFA E:(26-NR) 1/M ALFA, WEIGHTED BY NR # TFFALFA E:(26-NR) 1/M ALFA, WEIGHTED BY NR
# M:(24-NR) # M:(24-NR)
# TFFRTALF E:(10+NA) SQRT(ALFA), NORMALIZED # TFFRTALF E:(10+NA) SQRT(ALFA), NORMALIZED

View File

@ -45,7 +45,7 @@
# #
# THE S17.2 ROUTINE FURTHER DEFINES THE SEARCH SECTOR BY COMPUTING ANGULAR LIMITS AND USES THE TIME THETA # THE S17.2 ROUTINE FURTHER DEFINES THE SEARCH SECTOR BY COMPUTING ANGULAR LIMITS AND USES THE TIME THETA
# SUBROUTINE TO COMPUTE THE SEARCH START AND END TIMES. THE SEARCH IS THEN MADE IN AN ITERATIVE LOOP USING THE # SUBROUTINE TO COMPUTE THE SEARCH START AND END TIMES. THE SEARCH IS THEN MADE IN AN ITERATIVE LOOP USING THE
# LAMBERT SUBROUTINE TO COMPUTE TEH VELOCITIES REQUIRED AT TPI TIME AND AT TPF TIME. EXIT FROM THE SEARCH LOOP # LAMBERT SUBROUTINE TO COMPUTE THE VELOCITIES REQUIRED AT TPI TIME AND AT TPF TIME. EXIT FROM THE SEARCH LOOP
# IS MADE WHEN SOLUTION CRITERIA ARE MET (NORMAL EXIT) OR AS SOON AS IT IS EVIDENT THAT NO SOLUTION EXISTS IN # IS MADE WHEN SOLUTION CRITERIA ARE MET (NORMAL EXIT) OR AS SOON AS IT IS EVIDENT THAT NO SOLUTION EXISTS IN
# THE SECTOR SEARCHED. # THE SECTOR SEARCHED.
# #

View File

@ -365,7 +365,7 @@ YOFFSET EXTEND
YACLIM TCR ACTLIM # YAW ACTUATOR-COMMAND-LIMITER YACLIM TCR ACTLIM # YAW ACTUATOR-COMMAND-LIMITER
YOUT CS YCMD # INCRMENTAL YAW COMMAND YOUT CS YCMD # INCREMENTAL YAW COMMAND
AD CMDTMP AD CMDTMP
ADS TVCYAW # UPDATE THE ERROR COUNTER (NO RESTART- ADS TVCYAW # UPDATE THE ERROR COUNTER (NO RESTART-
# PROTECT, SINCE ERROR CNTR ZEROED) # PROTECT, SINCE ERROR CNTR ZEROED)

View File

@ -149,7 +149,7 @@ GAINCHNG TC IBNKCALL # UPDATE IXX, IAVG, IAVG/TLX
CAF NINETEEN # RESET THE VARIABLE-GAIN UPDATE COUNTER CAF NINETEEN # RESET THE VARIABLE-GAIN UPDATE COUNTER
TS VCNTRTMP TS VCNTRTMP
EXECCOPY INCR TVCEXPHS # RESTART-PROTECT TEH COPYCYCLE (1) EXECCOPY INCR TVCEXPHS # RESTART-PROTECT THE COPYCYCLE (1)
CAE MASSTMP # CSMMASS KG B+16 CAE MASSTMP # CSMMASS KG B+16
TS CSMMASS TS CSMMASS

View File

@ -197,7 +197,7 @@ ENABL2 LXCH BANKRUPT # CONTINUE PREPARATION OF OUTCOUNTERS
TCF NOQRSM TCF NOQRSM
CMDSOUT LXCH BANKRUPT # CONTNUE PREPARATION OF OUTCOUNTERS CMDSOUT LXCH BANKRUPT # CONTINUE PREPARATION OF OUTCOUNTERS
EXTEND EXTEND
QXCH QRUPT QXCH QRUPT

View File

@ -136,7 +136,7 @@
# PARABOLA WHICH PASSES THROUGH THE OPERATING POINT. FOR REGION 3 # PARABOLA WHICH PASSES THROUGH THE OPERATING POINT. FOR REGION 3
# DESIRED OGARATE IS SIMPLY +-MAXLIM. FOR REGIONS 1 OR 6 THE SOLUTION # DESIRED OGARATE IS SIMPLY +-MAXLIM. FOR REGIONS 1 OR 6 THE SOLUTION
# TO A QUADRATIC IS REQUIRED (THE PENETRATION IS ALONG THE STRAIGHT # TO A QUADRATIC IS REQUIRED (THE PENETRATION IS ALONG THE STRAIGHT
# LINE OR MINLIM BOUNDRY SWITCH LINES). AN APPROXIMATION IS MADE # LINE OR MINLIM BOUNDARY SWITCH LINES). AN APPROXIMATION IS MADE
# INSTEAD. CONSIDER AN OPERATING POINT IN REGION 6'. PASS A TANGENT TO # INSTEAD. CONSIDER AN OPERATING POINT IN REGION 6'. PASS A TANGENT TO
# THE CONTROL PARABOLA THROUGH THE OPERATING POINT, AND FIND ITS # THE CONTROL PARABOLA THROUGH THE OPERATING POINT, AND FIND ITS
# INTERSECTION WITH THE STRAIGHT LINE SECTION OF THE SWITCH CURVE... # INTERSECTION WITH THE STRAIGHT LINE SECTION OF THE SWITCH CURVE...
@ -150,7 +150,7 @@
# SECOND INTERVALS) WILL BENEFIT FROM THE CONVERGENT NATURE OF THE # SECOND INTERVALS) WILL BENEFIT FROM THE CONVERGENT NATURE OF THE
# APPROXIMATION. # APPROXIMATION.
# #
# FOR LARGE OGAERROR THE TANGENT INTERSECTS +-MINLIM SWITCH BOUNDRY BEFORE # FOR LARGE OGAERROR THE TANGENT INTERSECTS +-MINLIM SWITCH BOUNDARY BEFORE
# INTERSECTING THE STRAIGHT LINE SWITCH. HOWEVER THE MINLIM IS # INTERSECTING THE STRAIGHT LINE SWITCH. HOWEVER THE MINLIM IS
# IGNORED IN COMPUTING THE FIRING TIME, SO THAT THE EXTENSION (INTO # IGNORED IN COMPUTING THE FIRING TIME, SO THAT THE EXTENSION (INTO
# THE COAST REGION) OF THE STRAIGHT LINE SWITCH IS WHAT IS FIRED TO. # THE COAST REGION) OF THE STRAIGHT LINE SWITCH IS WHAT IS FIRED TO.

View File

@ -22,7 +22,7 @@
# This AGC program shall also be referred to as Colossus 2A # This AGC program shall also be referred to as Colossus 2A
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -55,7 +55,7 @@
# C(LST2 +16) = 2CADR OF TASK9 # C(LST2 +16) = 2CADR OF TASK9
# #
# WARNINGS -- # WARNINGS --
# 1) 1 <= C(A) <= 16250D (1 CENTISCOND TO 162.5 SEC) # 1) 1 <= C(A) <= 16250D (1 CENTISECOND TO 162.5 SEC)
# 2) 9 TASKS MAXIMUM # 2) 9 TASKS MAXIMUM
# 3) TASKS CALLED UNDER INTERRUPT INHIBITED # 3) TASKS CALLED UNDER INTERRUPT INHIBITED
# 4) TASKS END BY TC TASKOVER # 4) TASKS END BY TC TASKOVER
@ -472,7 +472,7 @@ NOQBRSM DXCH ARUPT
# LONGEXIT AND LONGEXIT+1 # LONGEXIT AND LONGEXIT+1
# LONGTIME AND LONGTIME+1 # LONGTIME AND LONGTIME+1
# #
# *** THE FOLLOWING IS TO BE IN FIXED-FIXED AND UNSWITCHED ERASIBLE ** # *** THE FOLLOWING IS TO BE IN FIXED-FIXED AND UNSWITCHED ERASABLE **
BLOCK 02 BLOCK 02
EBANK= LST1 EBANK= LST1
@ -503,7 +503,7 @@ LNGCALL2 LXCH LONGEXIT +1 # SAVE THE CORRECT BB FOR RETURN
# *** WAITLIST TASK LONGCYCL *** # *** WAITLIST TASK LONGCYCL ***
LONGCYCL EXTEND # CAN WE SUCCESFULLY TAKE ABOUT 1.25 LONGCYCL EXTEND # CAN WE SUCCESSFULLY TAKE ABOUT 1.25
DCS DPBIT14 # MINUTES OFF OF LONGTIME DCS DPBIT14 # MINUTES OFF OF LONGTIME
DAS LONGTIME DAS LONGTIME

View File

@ -391,7 +391,7 @@ DVOVSUB TS SCRATCHY # SAVE UPPER HALF OF DIVIDEND
AD BIT1 AD BIT1
ZEROPLUS XCH SCRATCHY # STORE ABS(DIVISOR). PICK UP TOP HALF OF ZEROPLUS XCH SCRATCHY # STORE ABS(DIVISOR). PICK UP TOP HALF OF
EXTEND # DIVIDENT. EXTEND # DIVIDEND.
BZMF GOODNEG # GET -ABS(DIVIDEND) BZMF GOODNEG # GET -ABS(DIVIDEND)
# Page 1493 # Page 1493
CS A CS A

View File

@ -157,7 +157,7 @@ COASCODE INDEX FIXLOC
TC INTPRET # COMPUTE X AND Y PLANE VECTORS TC INTPRET # COMPUTE X AND Y PLANE VECTORS
# Page 248 # Page 248
# THE OPTAXIS SOBROUTINE COMPUTES THE X AND Y MARK PLANE VECS AND # THE OPTAXIS SUBROUTINE COMPUTES THE X AND Y MARK PLANE VECS AND
# ROTATES THEM THRU THE APPARENT FIELD OF VIEW ROTATION UNIQUE TO AOT # ROTATES THEM THRU THE APPARENT FIELD OF VIEW ROTATION UNIQUE TO AOT
# OPTAXIS USES OANB TO COMPUTE THE OPTIC AXIS # OPTAXIS USES OANB TO COMPUTE THE OPTIC AXIS
# #

View File

@ -357,7 +357,7 @@ ASCTERM EXIT
CALL CALL
FINDCDUW -2 FINDCDUW -2
ASCTERM1 EXIT ASCTERM1 EXIT
+1 CA FLAGWRD9 # INSURE THAT THE NOUN 63 DISPLAY IS +1 CA FLAGWRD9 # ENSURE THAT THE NOUN 63 DISPLAY IS
MASK FLRCSBIT # BYPASSED IF WE ARE IN THE RCS TRIMMING MASK FLRCSBIT # BYPASSED IF WE ARE IN THE RCS TRIMMING
CCS A # MODE OF OPERATION CCS A # MODE OF OPERATION
TCF ASCTERM3 TCF ASCTERM3
@ -374,7 +374,7 @@ ASCTERM3 TCF ENDOFJOB
ASCTERM4 EXIT ASCTERM4 EXIT
INHINT INHINT
TC IBNKCALL # NO GUIDANCE THIS CYCLE -- HENCE ZERO TC IBNKCALL # NO GUIDANCE THIS CYCLE -- HENCE ZERO
CADR ZATTEROR # THE DAP COMMANDED ERRORSss. CADR ZATTEROR # THE DAP COMMANDED ERRORS.
TCF ASCTERM1 +1 TCF ASCTERM1 +1
CHECKALT DLOAD DSU CHECKALT DLOAD DSU
@ -425,7 +425,7 @@ OFFROT CLRGO
SETXFLAG = CHECKYAW SETXFLAG = CHECKYAW
CHECKYAW SET CHECKYAW SET
XOVINFLG # PROHIBIT X-AXIS OVERRRIDE XOVINFLG # PROHIBIT X-AXIS OVERRIDE
DLOAD VXSC DLOAD VXSC
ATY ATY
LAXIS LAXIS
@ -473,7 +473,7 @@ ENGOFF RTB
PIPTIME PIPTIME
TTOGO TTOGO
DCOMP EXIT DCOMP EXIT
TC TPAGREE # FORCH SIGN AGREEMENT ON MPAC, MPAC +1. TC TPAGREE # FORCE SIGN AGREEMENT ON MPAC, MPAC +1.
CAF EBANK7 CAF EBANK7
TS EBANK TS EBANK
EBANK= TGO EBANK= TGO

View File

@ -46,7 +46,7 @@
# WHEN POINTING A SPACECRAFT AXIS (I.E., X, Y, Z, THE AOT, THRUST AXIS, ETC.) THE SUBROUTINE VECPOINT MAY BE # WHEN POINTING A SPACECRAFT AXIS (I.E., X, Y, Z, THE AOT, THRUST AXIS, ETC.) THE SUBROUTINE VECPOINT MAY BE
# USED TO GENERATE THIS SET OF DESIRED CDU ANGLES (SEE DESCRIPTION IN R60). # USED TO GENERATE THIS SET OF DESIRED CDU ANGLES (SEE DESCRIPTION IN R60).
# #
# WITH THIS INFORMATION KALCMANU DETERMINES THE DIRECTION OF THE SINGLE EQUIVALEN ROTATION (COF ALSO U) AND THE # WITH THIS INFORMATION KALCMANU DETERMINES THE DIRECTION OF THE SINGLE EQUIVALENT ROTATION (COF ALSO U) AND THE
# MAGNITUDE OF THE ROTATION (AM) TO BRING THE S/C FROM ITS INITIAL ORIENTATION TO ITS FINAL ORIENTATION. # MAGNITUDE OF THE ROTATION (AM) TO BRING THE S/C FROM ITS INITIAL ORIENTATION TO ITS FINAL ORIENTATION.
# THIS DIRECTION REMAINS FIXED BOTH IN INERTIAL COORDINATES AND IN COMMANDED S/C AXES THROUGHOUT THE # THIS DIRECTION REMAINS FIXED BOTH IN INERTIAL COORDINATES AND IN COMMANDED S/C AXES THROUGHOUT THE
# _ # _
@ -86,7 +86,7 @@
# A) AM LESS THAN .25 DEGREES (MINANG) # A) AM LESS THAN .25 DEGREES (MINANG)
# B) AM GREATER THAN 170 DEGREES (MAXANG) # B) AM GREATER THAN 170 DEGREES (MAXANG)
# #
# IF AM IS LESS THAN .25 DEGREES, NO COMPLICATED AUTOMATIC MANEUVERING IS NECESSARY. THREFORE, WE CAN SIMPLY # IF AM IS LESS THAN .25 DEGREES, NO COMPLICATED AUTOMATIC MANEUVERING IS NECESSARY. THEREFORE, WE CAN SIMPLY
# SET CDU DESIRED EQUAL TO THE FINAL CDU DESIRED ANGLES AND TERMINATE THE JOB. # SET CDU DESIRED EQUAL TO THE FINAL CDU DESIRED ANGLES AND TERMINATE THE JOB.
# #
# IF AM IS GREATER THAN .25 DEGREES BUT LESS THAN 170 DEGREES THE AXES OF THE SINGLE EQUIVALENT ROTATION # IF AM IS GREATER THAN .25 DEGREES BUT LESS THAN 170 DEGREES THE AXES OF THE SINGLE EQUIVALENT ROTATION
@ -141,7 +141,7 @@
# RELINT # RELINT
# #
# THE USER'S PROGRAM MAY EITHER CONTINUE OR WAIT FOR THE TERMINATION OF THE MANEUVER. IF THE USER WISHES TO # THE USER'S PROGRAM MAY EITHER CONTINUE OR WAIT FOR THE TERMINATION OF THE MANEUVER. IF THE USER WISHES TO
# WAIT, HE MAY PUT HIS JOB TO SLEEP WTH THE FOLLOWING INSTRUCTIONS: # WAIT, HE MAY PUT HIS JOB TO SLEEP WITH THE FOLLOWING INSTRUCTIONS:
# #
# L TC BANKCALL # L TC BANKCALL
# L+1 CADR ATTSTALL # L+1 CADR ATTSTALL
@ -260,7 +260,7 @@
# THIS ROUTINE EXTRACTS THE CDU ANGLES FROM A DIRECTION COSINE MATRIX (M SCALED BY 2) RELATING S/C AXIS TO # THIS ROUTINE EXTRACTS THE CDU ANGLES FROM A DIRECTION COSINE MATRIX (M SCALED BY 2) RELATING S/C AXIS TO
# * # *
# STABLE MEMBER AXES. X1 MUST CONTAIN THE COMPLEMENT OF THE STARTING ADDRESS FOR M. THE SUBROUTINE LEAVES THE # STABLE MEMBER AXES. X1 MUST CONTAIN THE COMPLEMENT OF THE STARTING ADDRESS FOR M. THE SUBROUTINE LEAVES THE
# CORRESPONDING GIMBAL ANGLES IN V(MPAC) AS DOUBLE PRECISION 1'S COMPLEMENT ANGLES ACALED BY 2PI. THE FORMULAS # CORRESPONDING GIMBAL ANGLES IN V(MPAC) AS DOUBLE PRECISION 1'S COMPLEMENT ANGLES SCALED BY 2PI. THE FORMULAS
# FOR THIS CONVERSION ARE # FOR THIS CONVERSION ARE
# #
# Z = ARCSIN (M ) # Z = ARCSIN (M )

View File

@ -55,7 +55,7 @@
# BETWEEN THE PRE-IGNITION TIME CHECK -- ARE WE WITHIN 45 SECONDS OF TIG? -- AND TIG + 26 SECONDS, WHEN DPS # BETWEEN THE PRE-IGNITION TIME CHECK -- ARE WE WITHIN 45 SECONDS OF TIG? -- AND TIG + 26 SECONDS, WHEN DPS
# PROGRAMS THROTTLE UP. # PROGRAMS THROTTLE UP.
# #
# VARIATIONS AMONG PROGRAMS ARE ACCOMODATED BY MEANS OF TABLES CONTAINING CONSTANTS (FOR AVEGEXIT, FOR # VARIATIONS AMONG PROGRAMS ARE ACCOMMODATED BY MEANS OF TABLES CONTAINING CONSTANTS (FOR AVEGEXIT, FOR
# WAITLIST, FOR PINBALL) AND TCF INSTRUCTIONS. USERS PLACE THE ADRES OF THE HEAD OF THE APPROPRIATE TABLE # WAITLIST, FOR PINBALL) AND TCF INSTRUCTIONS. USERS PLACE THE ADRES OF THE HEAD OF THE APPROPRIATE TABLE
# (OF P61TABLE FOR P61LM, FOR EXAMPLE) IN ERASABLE REGISTER `WHICH' (E4). THE IGNITION ROUTINE THEN INDEXES BY # (OF P61TABLE FOR P61LM, FOR EXAMPLE) IN ERASABLE REGISTER `WHICH' (E4). THE IGNITION ROUTINE THEN INDEXES BY
# WHICH TO OBTAIN OR EXECUTE THE PROPER TABLE ENTRY. THE IGNITION ROUTINE IS INITIATED BY A TCF BURNBABY, # WHICH TO OBTAIN OR EXECUTE THE PROPER TABLE ENTRY. THE IGNITION ROUTINE IS INITIATED BY A TCF BURNBABY,
@ -594,7 +594,7 @@ ZOOM = P40ZOOMA
COMFAIL TC UPFLAG # (15) COMFAIL TC UPFLAG # (15)
ADRES IDLEFLAG ADRES IDLEFLAG
TC UPFLAG # SET FLAG TO SUPRESS CONFLICTING DISPLAY TC UPFLAG # SET FLAG TO SUPPRESS CONFLICTING DISPLAY
ADRES FLUNDISP ADRES FLUNDISP
CAF FOUR # RESET DVMON CAF FOUR # RESET DVMON
TS DVCNTR TS DVCNTR

View File

@ -154,7 +154,7 @@ CALLGMBL EQUALS BIT5 # RCSFLAGS INITIALIZATION.
TS NEXTU TS NEXTU
TS NEXTV TS NEXTV
CS TEN CS TEN
TS DAPZRUPT # JASK NOT IN PROGRESS, INITIALIZE NEG. TS DAPZRUPT # TASK NOT IN PROGRESS, INITIALIZE NEG.
CA TWO CA TWO
TS NPTRAPS TS NPTRAPS
TS NQTRAPS TS NQTRAPS

View File

@ -321,7 +321,7 @@ DNTMEXIT EXTEND # DOWN-TELEMETRY EXIT
CA L # RESPECTIVELY CA L # RESPECTIVELY
TMEXITL EXTEND TMEXITL EXTEND
WRITE DNTM2 WRITE DNTM2
TMRESUME TCF RESUME # EXIT TELEMTRY PROGRAM VIA RESUME. TMRESUME TCF RESUME # EXIT TELEMETRY PROGRAM VIA RESUME.
MINB12 EQUALS -1/8 MINB12 EQUALS -1/8
DNECADR EQUALS TMINDEX DNECADR EQUALS TMINDEX

View File

@ -45,7 +45,7 @@
# FINDCDUW PROVIDES THE INTERFACES BETWEEN THE VARIOUS POWERED FLITE GUIDANCE PROGRAMS # FINDCDUW PROVIDES THE INTERFACES BETWEEN THE VARIOUS POWERED FLITE GUIDANCE PROGRAMS
# AND THE DIGITAL AUTOPILOT. THE INPUTS TO FINDCDUW ARE THE THRUST COMMAND VECTOR # AND THE DIGITAL AUTOPILOT. THE INPUTS TO FINDCDUW ARE THE THRUST COMMAND VECTOR
# AND THE WINDOW COMMAND VECTOR, AND THE OUTPUTS ARE THE GIMBAL ANGLE # AND THE WINDOW COMMAND VECTOR, AND THE OUTPUTS ARE THE GIMBAL ANGLE
# INCRMENTS, THE COMMANDED ATTITUDE ANGLE RATES, AND THE COMMANDED # INCREMENTS, THE COMMANDED ATTITUDE ANGLE RATES, AND THE COMMANDED
# ATTITUDE LAG ANGLES (WHICH ACCOUNT FOR THE ANGLES BY WHICH THE BODY WILL # ATTITUDE LAG ANGLES (WHICH ACCOUNT FOR THE ANGLES BY WHICH THE BODY WILL
# LAG BEHIND A RAMP COMMAND IN ATTITUDE ANGLE DUE TO THE FINITE ANGULAR # LAG BEHIND A RAMP COMMAND IN ATTITUDE ANGLE DUE TO THE FINITE ANGULAR
# ACCELERATIONS AVAILABLE). # ACCELERATIONS AVAILABLE).

View File

@ -365,7 +365,7 @@ TRACKBIT = BIT5
# BIT 3 FLAG 1 (S) # BIT 3 FLAG 1 (S)
SLOPESW = 027D # ITERATE WITH BIAS ITERATE WITH REGULAR SLOPESW = 027D # ITERATE WITH BIAS ITERATE WITH REGULAR
# METHOD IN ITERATOR FALSI METHOD IN # METHOD IN ITERATOR FALSE METHOD IN
SLOPEBIT = BIT3 # ITERATOR SLOPEBIT = BIT3 # ITERATOR
# BIT 2 FLAG 1 (S) # BIT 2 FLAG 1 (S)
@ -687,7 +687,7 @@ FLAGWRD6 = STATE +6 # (090-104)
# BIT 15 FLAG 6 (S) # BIT 15 FLAG 6 (S)
S32.1F1 = 090D # DELTA V AT CSI TIME DVT1 LESS THAN MAX S32.1F1 = 090D # DELTA V AT CSI TIME DVT1 LESS THAN MAX
S32BIT1 = BIT15 # ONE EXEEDS MAX S32BIT1 = BIT15 # ONE EXCEEDS MAX
# BIT 14 FLAG 6 (S) # BIT 14 FLAG 6 (S)
S32.1F2 = 091D # FIRST PASS OF REITERATION OF S32.1F2 = 091D # FIRST PASS OF REITERATION OF

View File

@ -72,7 +72,7 @@
# CHANNEL 12 CHAN12: OUTPUT CHANNEL; BITS USED TO DRIVE NAVIGATION AND SPACECRAFT HARDWARE. # CHANNEL 12 CHAN12: OUTPUT CHANNEL; BITS USED TO DRIVE NAVIGATION AND SPACECRAFT HARDWARE.
# #
# BIT 1 ZERO RR CDU; CDU'S GIVE RRADAR INFORMATION FOR LM # BIT 1 ZERO RR CDU; CDU'S GIVE RADAR INFORMATION FOR LM
# BIT 2 ENABLE CDU RADAR ERROR COUNTERS # BIT 2 ENABLE CDU RADAR ERROR COUNTERS
# BIT 3 NOT USED # BIT 3 NOT USED
# BIT 4 COARSE ALIGN ENABLE OF IMU # BIT 4 COARSE ALIGN ENABLE OF IMU
@ -158,7 +158,7 @@
# BIT 10 LM COMPUTER (NOT AGS) HAS CONTROL OF LM. # BIT 10 LM COMPUTER (NOT AGS) HAS CONTROL OF LM.
# BIT 11 IMU CAGE COMMAND TO DRIVE IMU GIMBAL ANGLES TO 0. # BIT 11 IMU CAGE COMMAND TO DRIVE IMU GIMBAL ANGLES TO 0.
# BIT 12 IMU CDU FAIL (MALFUNCTION OF IMU CDU,S) # BIT 12 IMU CDU FAIL (MALFUNCTION OF IMU CDU,S)
# BIT 13 IMU FAIL (MALFUCTION OF IMU STABILIZATION LOOPS) # BIT 13 IMU FAIL (MALFUNCTION OF IMU STABILIZATION LOOPS)
# BIT 14 ISS TURN ON REQUESTED # BIT 14 ISS TURN ON REQUESTED
# BIT 15 TEMPERATURE OF STABLE MEMBER WITHIN DESIGN LIMITS # BIT 15 TEMPERATURE OF STABLE MEMBER WITHIN DESIGN LIMITS

View File

@ -65,7 +65,7 @@
# DISPLAYS USED IN P-31LM ** # DISPLAYS USED IN P-31LM **
# #
# V06N33 DISPLAY SOTRED TIG (IN HRS. MINS. SECS.) # V06N33 DISPLAY STORED TIG (IN HRS. MINS. SECS.)
# V06N42 DISPLAY APOGEE, PERIGEE, DELTAV. # V06N42 DISPLAY APOGEE, PERIGEE, DELTAV.
# V16N35 DISPLAY TIME FROM TIG. # V16N35 DISPLAY TIME FROM TIG.
# V06N45 TIME FROM IGNITION AND MIDDLE GIMBAL ANGLE. # V06N45 TIME FROM IGNITION AND MIDDLE GIMBAL ANGLE.

View File

@ -17,7 +17,7 @@
# 2021112-061. July 14, 1969. # 2021112-061. July 14, 1969.
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -189,7 +189,7 @@ RRNB1 PUSH COS # SHAFT ANGLE TO 2
# THIS ENTRY TO RRNB REQUIRES THE TRUNNION AND SHAFT ANGLES IN MPAC AND MPAC +1 RESPECTIVELY # THIS ENTRY TO RRNB REQUIRES THE TRUNNION AND SHAFT ANGLES IN MPAC AND MPAC +1 RESPECTIVELY
RRNBMPAC STODL 20D # SAVE SHAFT CDU IN 21. RRNBMPAC STODL 20D # SAVE SHAFT CDU IN 21.
MPAC # SET MODE TO DP. (THE PRECEEDING STORE MPAC # SET MODE TO DP. (THE PRECEDING STORE
# MAY BE DP, TP OR VECTOR.) # MAY BE DP, TP OR VECTOR.)
RTB SETPD RTB SETPD
CDULOGIC CDULOGIC

View File

@ -960,7 +960,7 @@ RODCOMP INHINT
XCH OLDPIPAZ XCH OLDPIPAZ
XCH RUPTREG3 XCH RUPTREG3
EXTEND # SHAPSHOT TIME OF PIPA READING. EXTEND # SNAPSHOT TIME OF PIPA READING.
DCA TIME2 DCA TIME2
# Page 817 # Page 817
DXCH THISTPIP DXCH THISTPIP
@ -1093,7 +1093,7 @@ AFCSPOT DLOAD # (2), (4), OR (6)
2D 2D
STODL /AFC/ # (0) STODL /AFC/ # (0)
ITRPNT2 EXIT ITRPNT2 EXIT
DXCH MPAC # MPAC = MEASURED ACCELARATION. DXCH MPAC # MPAC = MEASURED ACCELERATION.
TC BANKCALL TC BANKCALL
CADR THROTTLE +3 CADR THROTTLE +3
TC INTPRET TC INTPRET

View File

@ -347,7 +347,7 @@ R-RATE INCR NRTRAPS
TS OMEGAR TS OMEGAR
# END OF RATE DERIVATION # END OF RATE DERIVATION
# BEGIN OFFSET ESTIMATER # BEGIN OFFSET ESTIMATOR
# IN POWERED FLIGHT, AOSTASK WILL BE CALLED EVERY 2 SECONDS. # IN POWERED FLIGHT, AOSTASK WILL BE CALLED EVERY 2 SECONDS.
# AOS = AOS + K*SUMRATE # AOS = AOS + K*SUMRATE

View File

@ -49,7 +49,7 @@ P12LM TC PHASCHNG
TC CLRADMOD # INITIALIZE RADMODES FOR R29 TC CLRADMOD # INITIALIZE RADMODES FOR R29
TC DOWNFLAG # CLEAR RENDEVOUS FLAG FOR P22 TC DOWNFLAG # CLEAR RENDEZVOUS FLAG FOR P22
ADRES RNDVZFLG ADRES RNDVZFLG
CAF THRESH2 # INITIALIZE DVMON CAF THRESH2 # INITIALIZE DVMON

View File

@ -44,14 +44,14 @@
# (3) TO DISPLAY TO THE ASTRONAUT AND THE GROUND DEPENDENT VARIABLES # (3) TO DISPLAY TO THE ASTRONAUT AND THE GROUND DEPENDENT VARIABLES
# ASSOCIATED WITH THE CONCENTRIC FLIGHT PLAN MANEUVERS FOR # ASSOCIATED WITH THE CONCENTRIC FLIGHT PLAN MANEUVERS FOR
# APPROVAL BY THE ASTRRONAUT/GROUND. # APPROVAL BY THE ASTRONAUT/GROUND.
# (4) TO STORE THE CSI TARGET PARAMETERS FOR USE BY THE DESIRED # (4) TO STORE THE CSI TARGET PARAMETERS FOR USE BY THE DESIRED
# THRUSTING PROGRAM. # THRUSTING PROGRAM.
# #
# ASSUMPTIONS # ASSUMPTIONS
# (1) AT A SELECTED TPI TIME THE LINE OF SIGNT BETWEEN THE ACTIVE # (1) AT A SELECTED TPI TIME THE LINE OF SIGHT BETWEEN THE ACTIVE
# AND PASSIVE VEHICLES IS SELECTED TO BE A PRESCRIBED ANGLE (E) # AND PASSIVE VEHICLES IS SELECTED TO BE A PRESCRIBED ANGLE (E)
# FROM THE HORIZONTAL PLANE DEFINED BY THE ACTIVE VEHICLE # FROM THE HORIZONTAL PLANE DEFINED BY THE ACTIVE VEHICLE
# POSITION. # POSITION.
@ -72,7 +72,7 @@
# IGNITION. # IGNITION.
# (6) THE PERICENTER ALTITUDE OF THE ORBIT FOLLOWING CSI AND CDH # (6) THE PERICENTER ALTITUDE OF THE ORBIT FOLLOWING CSI AND CDH
# MUST BE GREATER THAN 35,000 FT (LUNAR ORBIT) OR 85 NM (EARCH # MUST BE GREATER THAN 35,000 FT (LUNAR ORBIT) OR 85 NM (EARTH
# ORBIT) FOR SUCCESSFUL COMPLETION OF THIS PROGRAM. # ORBIT) FOR SUCCESSFUL COMPLETION OF THIS PROGRAM.
# (7) THE CSI AND CDH MANEUVERS ARE ORIGINALLY ASSUMED TO BE # (7) THE CSI AND CDH MANEUVERS ARE ORIGINALLY ASSUMED TO BE
@ -107,7 +107,7 @@
# CALCULATES THE MANEUVER PARAMETERS. SET AT THE START OF # CALCULATES THE MANEUVER PARAMETERS. SET AT THE START OF
# EACH RENDEZVOUS PRE-THRUSTING PROGRAM. # EACH RENDEZVOUS PRE-THRUSTING PROGRAM.
# #
# FINAL FLAG -- SELECTES FINAL PROGRAM DISPLAYS AFTER CREW HAS # FINAL FLAG -- SELECTED FINAL PROGRAM DISPLAYS AFTER CREW HAS
# COMPLETED THE FINAL MANEUVER COMPUTATION AND DISPLAY # COMPLETED THE FINAL MANEUVER COMPUTATION AND DISPLAY
# CYCLE. # CYCLE.
# #

View File

@ -45,7 +45,7 @@ CALLQERR CA BIT13 # CALCULATE Q,R ERRORS UNLESS THESE AXES
CS DAPBOOLS # IN MANUAL RATE COMMAND? CS DAPBOOLS # IN MANUAL RATE COMMAND?
MASK OURRCBIT MASK OURRCBIT
EXTEND EXTEND
BZF Q,RORGTS # IF SO BYPASS CALCULATION OF ERROS. BZF Q,RORGTS # IF SO BYPASS CALCULATION OF ERRORS.
TC QERRCALC TC QERRCALC
Q,RORGTS CCS COTROLER # CHOOSE CONTROL SYSTEM FOR THIS DAP PASS: Q,RORGTS CCS COTROLER # CHOOSE CONTROL SYSTEM FOR THIS DAP PASS:

View File

@ -36,7 +36,7 @@
# RADAR SAMPLING LOOP. # RADAR SAMPLING LOOP.
COUNT* $$/RLEAD COUNT* $$/RLEAD
RADSAMP CCS RSAMPDT # TIMES NORMAL ONCE PER SECOND SAMLING RADSAMP CCS RSAMPDT # TIMES NORMAL ONCE PER SECOND SAMPLING
TCF +2 TCF +2
TCF TASKOVER # +0 INSERTED MANUALLY TERMINATES TEST. TCF TASKOVER # +0 INSERTED MANUALLY TERMINATES TEST.

View File

@ -34,7 +34,7 @@
# THIS ROUTINE IS ATTACHED TO T4RUPT, AND IS ENTERED EVERY 480 MS. ITS FUNCTION IS TO EXAMINE THE LOW 8 BITS # THIS ROUTINE IS ATTACHED TO T4RUPT, AND IS ENTERED EVERY 480 MS. ITS FUNCTION IS TO EXAMINE THE LOW 8 BITS
# OF CHANNEL 32 TO SEE IF ANY ISOLATION-VALVE CLOSURE BITS HAVE APPEARED OR DISAPPEARED (THE CREW IS WARNED OF JET # OF CHANNEL 32 TO SEE IF ANY ISOLATION-VALVE CLOSURE BITS HAVE APPEARED OR DISAPPEARED (THE CREW IS WARNED OF JET
# FAILURES BY LAMPS LIT BY THE GRUMMAN FAILURE-DETECTION CIRCUITRY; THEY MAY RESPOND BY OPERATING SWITCHES WHICH # FAILURES BY LAMPS LIT BY THE GRUMMAN FAILURE-DETECTION CIRCUITRY; THEY MAY RESPOND BY OPERATING SWITCHES WHICH
# ISOLATE PAIRS OF JETS FROM THE PROPELLANT TANKS AND SET BITS IN CHANNEL 32). iN THE EVENT THAT CHANNEL 32 BITS # ISOLATE PAIRS OF JETS FROM THE PROPELLANT TANKS AND SET BITS IN CHANNEL 32). IN THE EVENT THAT CHANNEL 32 BITS
# DIFFER FROM `PVALVEST', THE RECORD OF ACTIONS TAKEN BY THIS ROUTINE, THE APPROPRIATE BITS IN `CH5MASK' & # DIFFER FROM `PVALVEST', THE RECORD OF ACTIONS TAKEN BY THIS ROUTINE, THE APPROPRIATE BITS IN `CH5MASK' &
# `CH6MASK', USED BY THE DAP JET-SELECTION LOGIC, ARE UPDATED, AS IS `PVALVEST'. TO SPEED UP & SHORTEN THE # `CH6MASK', USED BY THE DAP JET-SELECTION LOGIC, ARE UPDATED, AS IS `PVALVEST'. TO SPEED UP & SHORTEN THE
# ROUTINE, NO MORE THAN ONE CHANGE IS ACCEPTED PER ENTRY. THE HIGHEST-NUMBERED BIT IN CHANNEL 32 WHICH REQUIRES # ROUTINE, NO MORE THAN ONE CHANGE IS ACCEPTED PER ENTRY. THE HIGHEST-NUMBERED BIT IN CHANNEL 32 WHICH REQUIRES
@ -47,7 +47,7 @@
# FORMER STATE. THE CONSEQUENCE OF THIS IS THAT THE NEXT ENTRY WOULD NOT SEE THE CHANGE INCOMPLETELY INCORP- # FORMER STATE. THE CONSEQUENCE OF THIS IS THAT THE NEXT ENTRY WOULD NOT SEE THE CHANGE INCOMPLETELY INCORP-
# ORATED BY THE LAST PASS (BECAUSE IT WENT AWAY AT JUST THE RIGHT TIME), BUT THE DAP MASK-WORDS WILL BE INCORRECT. # ORATED BY THE LAST PASS (BECAUSE IT WENT AWAY AT JUST THE RIGHT TIME), BUT THE DAP MASK-WORDS WILL BE INCORRECT.
# THIS COMBINATION OF EVENTS SEEMS QUITE REMOTE, BUT NOT IMPOSSIBLE UNLESS THE CREW OPERATES THE SWITCHES AT HALF- # THIS COMBINATION OF EVENTS SEEMS QUITE REMOTE, BUT NOT IMPOSSIBLE UNLESS THE CREW OPERATES THE SWITCHES AT HALF-
# SECOND INTERVALS OR LONGER. IN ANY EVENT, A DISAGREEMENT BETWEEN REALITY AND THE DAP MASKS WILL BE CUREED IF # SECOND INTERVALS OR LONGER. IN ANY EVENT, A DISAGREEMENT BETWEEN REALITY AND THE DAP MASKS WILL BE CURED IF
# THE MISINTERPRETED SWITCH IS REVERSED AND THEN RESTORED TO ITS CORRECT POSITION (SLOWLY). # THE MISINTERPRETED SWITCH IS REVERSED AND THEN RESTORED TO ITS CORRECT POSITION (SLOWLY).
# #
# CALLING SEQUENCE: # CALLING SEQUENCE:

View File

@ -119,7 +119,7 @@ TPMODE CAF ONE # MODE IS TP.
TC Q TC Q
# THE FOLLOWING ROUTINE INCREMENTS IN 2S COMPLEMENT THE REGISTER WHOSE ADDRESS IS IN BUF BY THE 1S COMPL. # THE FOLLOWING ROUTINE INCREMENTS IN 2S COMPLEMENT THE REGISTER WHOSE ADDRESS IS IN BUF BY THE 1S COMPL.
# QUANTITY FOUND IN TEM2. THIS MAY BE USED TO INCRMENT DESIRED IMU AND OPTICS CDU ANGLES OR ANY OTHER 2S COMPL. # QUANTITY FOUND IN TEM2. THIS MAY BE USED TO INCREMENT DESIRED IMU AND OPTICS CDU ANGLES OR ANY OTHER 2S COMPL.
# (+0 UNEQUAL TO -0) QUANTITY. MAY BE CALLED BY BANKCALL/SWCALL. # (+0 UNEQUAL TO -0) QUANTITY. MAY BE CALLED BY BANKCALL/SWCALL.
CDUINC TS TEM2 # 1S COMPL.QUANT. ARRIVES IN ACC. STORE IT CDUINC TS TEM2 # 1S COMPL.QUANT. ARRIVES IN ACC. STORE IT

View File

@ -19,7 +19,7 @@
# 2021112-061. July 14, 1969. # 2021112-061. July 14, 1969.
# #
# Prepared by # Prepared by
# Massachussets Institute of Technology # Massachusetts Institute of Technology
# 75 Cambridge Parkway # 75 Cambridge Parkway
# Cambridge, Massachusetts # Cambridge, Massachusetts
# #

View File

@ -114,7 +114,7 @@ NEGCHECK INDEX AXISCTR # JETS FIRING NEGATIVELY
TCF +2 TCF +2
TCF +1 # JETS COMMANDED OFF. SET CTR AND RETURN TCF +1 # JETS COMMANDED OFF. SET CTR AND RETURN
SETCTR INDEX AXISCTR # JET FIRING REVERSAL COMMANDED. SET CTR, SETCTR INDEX AXISCTR # JET FIRING REVERSAL COMMANDED. SET CTR,
CA UTIME # SET JET TIME TO ZER, AND RETURN CA UTIME # SET JET TIME TO ZERO, AND RETURN
# Page 1509 # Page 1509
INDEX AXISCTR INDEX AXISCTR
TS UJETCTR TS UJETCTR

View File

@ -132,7 +132,7 @@ DOIT CA PIF
TS TTHROT TS TTHROT
# SINCE /AF/ IS NOT AN INSTANTANEOUS ACCELERATION, BUT RATHER AN "AVERAGE" OF THE ACCELERATION LEVELS DURING # SINCE /AF/ IS NOT AN INSTANTANEOUS ACCELERATION, BUT RATHER AN "AVERAGE" OF THE ACCELERATION LEVELS DURING
# THE PRECEEDING PIPA INTERVAL, AND SINCE FP IS COMPUTED DIRECTLY FROM /AF/, FP IN ORDER TO CORRESPOND TO THE # THE PRECEDING PIPA INTERVAL, AND SINCE FP IS COMPUTED DIRECTLY FROM /AF/, FP IN ORDER TO CORRESPOND TO THE
# ACTUAL THRUST LEVEL AT THE END OF THE INTERVAL MUST BE WEIGHTED BY # ACTUAL THRUST LEVEL AT THE END OF THE INTERVAL MUST BE WEIGHTED BY
# #
# PIF(PPROCESS + TL) PIF /PIF/ # PIF(PPROCESS + TL) PIF /PIF/

View File

@ -156,7 +156,7 @@ ERRTEST CCS E # DOES BIG ERROR (THREE DEG BEYOND THE
SU FIREDB SU FIREDB
EXTEND EXTEND
BZMF SENSTEST # IF NOT: ARE UNBALANCED JETS PREFERRED? BZMF SENSTEST # IF NOT: ARE UNBALANCED JETS PREFERRED?
MAXJETS CAF TWO # IF YES: INCRMENT ADDRESS LOCATOR AND MAXJETS CAF TWO # IF YES: INCREMENT ADDRESS LOCATOR AND
ADS ADRSDIF2 # SET SWITCH FOR JET SELECT LOGIC TO 4. ADS ADRSDIF2 # SET SWITCH FOR JET SELECT LOGIC TO 4.
CAF FOUR # (ALWAYS DO THIS FOR P-AXIS) CAF FOUR # (ALWAYS DO THIS FOR P-AXIS)
TCF TJCALC TCF TJCALC